Causality: Approaches and Pitfalls

Emily Oster

February 26, 2016
The Problem

Consider an outcome Y, treatment T, covariate vector X

- Example: job training on wages, low fat diet on heart disease, etc.
- y_{i1}: outcome for person i if they get $T = 1$
- y_{i0}: outcome for person i if they get $T = 0$

- What is the impact of T on Y?
- Object of Interest

$$E(y_{i1} - y_{i0})$$
The Problem

- Observe y_{i1} or y_{i0} for a given person
 - You cannot see the same person at the same moment with and without the treatment
- What can you see?
 \[\bar{y}_1 - \bar{y}_0 \]
- What is the problem?
 - People with $T = 1$ may be systematically different from those with $T = 0$
- How can we figure out the causal impact of T?
Example and Outline

- Does eating a low fat diet lower your risk of mortality?
 - Y: Did you die?
 - T: Did you eat a low fat diet?
 - X: Other stuff about you

- Gold Standard
- Options with no special data requirements
- Options with special data requirements
Gold Standard: RCT

- Randomized Controlled Trial
- How to do?
 - Recruit people
 - Randomly tell half of them to eat a low fat diet
 - Follow over time, observe mortality
 - Compare mortality in treatment, control groups
- Why does this work?
- Downsides: expensive, hard to do.
Options with Common Data

- Example: NHANES Data
 - Dietary information
 - Good demographic data (education, income, etc)
 - Other health data
 - Can link to later mortality

- Selection on observables
- Selection on unobservables
Selection on Observables

Consider:

\[E(y_{i1} | T = 1, X_i) - E(y_{i0} | T = 0, X_i) \]

i.e. a regression of \(Y \) on \(T \) which controls for observed covariates \(X \)

Uncovers causal effect if \(T \) is random conditional on \(X \)

In example: \(T \) diet, \(X \) education, income, race, age, gender.

Pitfalls?
Selection on Unobservables

- There are controls we are important in determining treatment which we do not observe
 - Without further assumptions, can say nothing
- Assume relationship between X and T is informative about relationship between T and unobserved variables W
- May be able to bound effect size.
These techniques can work with limited data requirements

- It is easy to look for heterogeneity across people
- Very transparent
- May not (probably does not) generate causal effect.
- Very difficult to figure out how far you are from causal.
Imagine some variable Z which (randomly) pushes some people into treatment.

Imagine isolating variation in treatment which is due to variation in Z

Use that part of the variation to estimate the impact of T

Examples:

- Regression discontinuity
- Instrumental Variables
- Propensity Score
Regression Discontinuity

(Fake) Example.

Doctors adopt new rule: BMI over 25, told to go on low-fat diet. BMI under 25, not told.

Two individuals
- BMI 24.9: Not told to go on low-fat diet
- BMI 25.1: Told to go on low fat diet

Otherwise similar (before/after breakfast)

“Random” determination of diet advice

If anyone listens to diet advice, can use this
- Graph
Regression Discontinuity: Minuses

- Effects are specific to the characteristics off of which you estimate them
 - What if low fat diet matters more if you are at a BMI of 40?
- Very strong data requirements
- Must be sure other things do not vary across the threshold
 - Why did they put the rule there in the first place?
Instrumental Variables

- (Fake) Example.
- Religion Z requires being a vegetarian; on average, vegetarians eat less fat
 - Key assumption (“exclusion restriction”): religion does not otherwise affect mortality
- Relate Z to T, calculate \hat{T}
- Relate Y to \hat{T}
 - Effect is driven only by the variation in T that is driven by Z.
 - Z only impacts Y through T.
Instrumental Variables: Minuses

- Effects local to people impacted by the instrument
- Stringent data requirements
 - Exclusion restriction often implausible.
Propensity Score

- I know full set of variables that determine T. Actual T contains some random-ness.
- I do not know how variables enter to determine T
 - polynomials, interactions, etc
- Entering all variables in regression over fits
- Generate $Pr(T)$ by regressing T on all variables and combinations and predicting
 - Note on LASSO
- Control for $Pr(T)$, T.
- Pitfalls
Final Thoughts

- Causality is hard to show.
- Tension between strength of causality and locality of effect.
- I am in some ways more bullish than most on the first set of things,
 - Especially in the era of big data.