DENSE SUBGRAPH DISCOVERY IN LARGE GRAPHS
Charalampos (Babis) E. Tsourakakis
babis@seas.harvard.edu

Motivation
- Anomaly detection in “who-chose-who” network, large sets of vertices which look like cliques are suspicious.
- Vertices correspond to humans
- Edges denote at least one phone call exchange
- Many more applications rely on dense subgraph discovery, correlation mining, graph visualization, mining Twitter data, bioinformatics.

Main contributions
Theorem 1 (STOC’15) Let \(\epsilon \in (0, 1) \), \(\lambda > 1 \) constant and \(T = \lfloor n^\lambda \rfloor \).
- There is an algorithm that processes the first \(T \) updates in the dynamic stream such that:
 - It uses \(\tilde{O}(n) \) space (Space efficiency)
 - It maintains a value \(\text{OUTPUT}(t) \) at each \(t \in [T] \) such that for all \(t \in [T] \) whp
 \[\text{OUTPUT}(t)/(4 + \Theta(\epsilon)) \leq \text{OPT}(t) \leq \text{OPT}(t). \]

Theorem 2 (STOC’15) We can process a dynamic stream of updates in the input graph \(G \in O(n) \) space, with a single pass and with high probability return a \((2 + \Theta(\epsilon))\)-approximation of \(d^* = \max_{S \subseteq V} \rho(S) \) at the end of the stream.

Theorem 3 (KDD’15) Sample each edge \(e \in E_H \) independently with probability \(p = \frac{\log n}{G} \). Then, the following statements hold simultaneously with high probability:
- For all \(U \subseteq V \) such that \(p(U) \geq D, \rho(U) \geq (1 - \epsilon)\log n \) for any \(\epsilon > 0 \).
- For all \(U \subseteq V \) such that \(p(U) < (1 - 2\epsilon)D, \rho(U) < (1 - \epsilon)\log n \) for any \(\epsilon > 0 \).

Corollary 1 (KDD’15) We improve the approximation guarantee of the above dynamic streaming algorithm to \((1 + \Theta(\epsilon)) \).

Theorem 4 (WWW’15) Consider the following generalization of the DSP, the \(k \)-clique DSP. The goal is to maximize the \(k \)-clique density \(h_k(S), k \geq 2 \) as \(h_k(S) = \frac{|S|^k}{2^k} \).
- For any constant \(K \), the \(K \)-clique densest subgraph problem can be solved exactly in polynomial time.
- Furthermore, we can \(1/3 \)-approximate it using any \(K \)-clique counting algorithm as subroutine.

Key concept – \((\alpha, d, L)\)-decomp
Definition 1 Fix any \(\alpha \geq 1, d \geq 0, \) and any positive integer \(L \). Consider a family of subsets \(Z_i \subseteq \ldots \subseteq Z_{i_L} \). The tuple \((Z_1, \ldots, Z_L)\) is an \((\alpha, d, L)\)-decomposition of the input graph \(G = (V, E) \) if \(Z_i = V \) and, for every \(i \in [L - 1] \), we have \(Z_{i+1} \supseteq \{v \in Z_i : D_{Z_i}(Z_{i+1}) > \alpha d \} \) and \(Z_{i+1} \cap \{v \in Z_i : D_{Z_i}(Z_{i+1}) < d \} = \emptyset \).

Two key properties of the \((\alpha, d, L)\)-decomposition follow.
Theorem 5 Fix any \(\alpha \geq 1, d \geq 0, \epsilon \in (0, 1) \), \(L \leq 2 + \lfloor \log_{1+\epsilon} n \rfloor \). Let \(d^* \leftarrow \max_{S \subseteq V} \rho(S) \) be the maximum density of any subgraph in \(G = (V, E) \), and let \((Z_1, \ldots, Z_L)\) be an \((\alpha, d, L)\)-decomposition of \(G = (V, E) \). We have: (1) If \(d > 2(1 + \epsilon)d^* \), then \(Z_L = \emptyset \), and (2) if \(d < \alpha d^* \), then \(Z_L \neq \emptyset \).

(Rough) Idea of how to turn the previous theorem into an algorithm.
- Discretize the range of \(d^* \) as \(d_k \leftarrow (1 + \epsilon)^{k-1} \frac{m}{n} \), \(k \in [K] \) where \(K = O(\log_{1+\epsilon} n) \).
- For every \(k \in [K] \), construct an \((\alpha, d_k, L)\)-decomposition \((Z_1(k), \ldots, Z_L(k))\), where \(L = O(\log_{1+\epsilon} n) \).

Then we have the following guarantees:
1. \(d^*/(1 + \epsilon) \leq d_k \leq 2(1 + \epsilon) \cdot d^* \).
2. There exists an index \(j^* \in [L] \) such that \(\rho(Z_{j^*}) \geq d_k/(2(1 + \epsilon)) \).

Experimental results

<table>
<thead>
<tr>
<th>k-cliques</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_x)</td>
<td>(\frac{</td>
<td>S</td>
<td>}{</td>
</tr>
<tr>
<td>0.12</td>
<td>1.012</td>
<td>0.26</td>
<td>432</td>
</tr>
<tr>
<td>0.11</td>
<td>1.8686</td>
<td>0.80</td>
<td>76</td>
</tr>
<tr>
<td>0.19</td>
<td>16.714</td>
<td>0.54</td>
<td>102</td>
</tr>
<tr>
<td>0.13</td>
<td>553</td>
<td>0.38</td>
<td>167</td>
</tr>
</tbody>
</table>

(p,q)-bicliques

<table>
<thead>
<tr>
<th></th>
<th>((p, q) = (1, 1))</th>
<th>((p, q) = (2, 2))</th>
<th>((p, q) = (3, 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_x)</td>
<td>(\frac{</td>
<td>S</td>
<td>}{</td>
</tr>
<tr>
<td>0.001</td>
<td>9.177</td>
<td>0.06</td>
<td>181</td>
</tr>
<tr>
<td>0.001</td>
<td>6.437</td>
<td>0.41</td>
<td>18</td>
</tr>
</tbody>
</table>

Experimental results.
- Effect of sampling on Epinions network.

Open problems
- Can we improve the \((4 + \epsilon)\) approximation guarantee? What about weighted graphs?
- Space- and time-efficient fully dynamic algorithm for other graph problems, e.g., single-source shortest paths?

References