Learning and Planning Under Uncertainty for Wildlife Conservation

Al-Assisted Decision-Making for Conservation | October 20, 2022

Lily Xu Harvard University

Photos by Lily Xu

Srepok Wildlife Sanctuary Cambodia

illegal campsite

43,269 patrol observations recorded 2013 - 2018

PAWS Overview Protection Assistant for Wildlife Security

Predicted risk maps

overall risk

dry season

rainy season

[Xu et al., ICDE-20]

Photos by James Lourens and Lily Xu

Snares per sq. km patrolled

[Xu et al., ICDE-20]

"I am super excited with the results. Let's get this going on other countries too this year." —Rohit Singh, WWF Zero Poaching Lead

Deployment to 1000+ protected areas

Data-scarce parks: conduct patrols to detect illegal activity and improve the predictive model

The Dual Mandate exploitation Data-rich parks: build predictive models to plan patrols

exploration

[Xu et al., AAAI-21]

Unknown poaching prob μ_i

Vulnerable Less vulnerable

[Xu et al., IJCAI-22]

How do adversaries respond to our patrols?

[Xu et al., UAI-21]

Deterrence is key

past patrol effort

illegal activity

deterrence

displacement

Robust planning

deterrence! Sequential decision-making

uncertainty? L robust patrol planning

[Xu et al., UAI-21]

Collaboration with conservation NGOs

Field tests in Cambodia and Uganda [Xu et al., ICDE-20]

Protection Assistant for Wildlife Security

Global deployment

New AI Methodology

Multi-armed bandits to explore/exploit [Xu et al., AAAI-21]

Ranked prioritization with online allocation [Xu et al., IJCAI-22]

Agent oracle ĨZ → $\rightarrow \pi$ DDPG Nature oracle $\widetilde{\pi}$ \rightarrow

Robust sequential decision-making [Xu et al., UAI-21]

AI for Conservation

Thanks to my collaborators and our conservation partners

Milind Tambe, Andrew Perrault, Fei Fang, Andy Plumptre, Andrew Davies, Luke Miratrix, Kai Wang, Elizabeth Bondi, Arpita Biswas, Diana Acosta-Navas, Jackson Killian, Rachel Guo

https://lily-x.github.io lily_xu@g.harvard.edu

Computational challenges Deploying AI in the real world

AI has much to learn from conservation and other real-world challenges!

Lessons Learned

Project design + scoping

- Begin with simple computational approaches
- Incremental deployment before ambitious project design

Deployment

- Real-world deployment is necessary for • effective technology transfer
- Large-scale deployment requires quality • engineering
- Evaluate with self-contained experiments

Marrying research + practice

- Integrate domain expertise into algorithm design
- Consider real-world constraints as research challenges, not limitations
- Limited data inspire research directions to close the gap

