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ABSTRACT

Background: The COVID-19 outbreak has already caused significant mortality worldwide. As the
epidemic accelerates, understanding the transmission dynamics of COVID-19 is crucial to informing
national and regional policies. We develop an individual-level model for SARS-CoV?2 transmission
which accounts for location-dependent distributions of age and household structure. We apply our
model to Hubei, China and Lombardy, Italy to analyze the impact of demographic structure on
estimates for key parameters such as the rate of documentation and the reproduction number 7
for COVID-19 cases. We also assess the effectiveness of potential policies ranging from physical
distancing to sheltering in place in Lombardy.

Methods: Our study develops a stochastic, agent-based model for SARS-CoV2 spread. A key feature
of the model is the inclusion of population-specific demographic structure, such as the distributions
of age, household structure, contact across age groups, and comorbidities. We use prior estimates of
these demographic features to instantiate our model for two locations: Hubei, China and Lombardy,
Italy. Furthermore, we utilize the data on the number of reported deaths due to COVID-19 in both
locations to estimate parameters describing location-specific variation in the transmissibility and
fatality of the disease (for reasons beyond demography). The range of the parameters in our model
that are consistent with reported data are used to construct plausible ranges for 7o and the rate of
documentation in each location. Finally, we analyze potential policy responses in the context of
Lombardy. Our analysis traces out the trade-off between adoption of physical distancing across the
entire population and policies that encourage members of a specific age group to shelter at home.

Results: Our estimates for 7y are comparable to the rest of the literature, with a range of 2.11-2.27
for Hubei and 2.50-3.20 for Lombardy, suggesting higher rates of transmission in the latter. Scenarios
where the case fatality rates are higher in Lombardy than Hubei by a factor of 1-5 times appear
plausible given the data (even after accounting for differences in age and comorbidity distributions).
We estimate the rate at which symptomatic cases are documented to be at 10.3-19.2% in Hubei and
1.2-8% in Lombardy, indicating that the number of undocumented cases may be even higher than has
previously been estimated. Evaluation of potential policies suggests that encouraging a single age
group to shelter in place is insufficient to control the epidemic by itself, but that targeted "salutary
sheltering” by even 50% of a single age group has a substantial impact when combined with adoption
of physical distancing by the rest of the population.



1 Introduction

Since December 2019, the ongoing COVID-19 pandemic — caused by the the novel coronavirus, SARS-CoV2 — has
resulted in significant morbidity and mortality [1]]. As of March 28, 2020, an estimated 664,000 individuals have
been infected, with over 30,000 fatalities worldwide [2]. Certain key factors such as existing comorbidities, age, and
potentially gender have appeared to play a role in an increased risk of mortality [3]]. Epidemiological studies have
provided significant insights into the disease to date; however, as the pace of the pandemic continues to accelerate in
certain regions of the world, understanding factors related to the transmission dynamics of SARS-CoV2 will be critical
to mitigating its spread [4H7]]. Moreover, as national and regional governments begin to implement broad-reaching
policies in response to rising case counts and stressed healthcare systems, estimating the impact of these policies while
accounting for transmission-related factors will be vital.

Prior studies have developed accurate prediction and control models in the setting of other emerging outbreaks including
West Nile Virus, Avian influenza and SARS, among others [8H10]. Some previous studies have focused on developing
analytical or algorithmic understanding of policies for epidemic control or eradication [11H16], while others have
examined techniques for constructing realistic epidemic simulation environments [17H19].

The aim of this study is to employ mathematical modeling to evaluate the impact of age distribution and familial
household contacts on transmission using existing data from Hubei, China, and Lombardy, Italy — two regions that have
been characterized as epicenters for SARS-CoV2 infection — and describe how the implications of these findings may
affect the utility of potential non-pharmaceutical interventions at a country-level.

A key feature of this study is the incorporation of demographic structure, including age distribution, age-stratified
contact patterns, household structures, and comorbidity distributions. Existing epidemiological work characterizing the
impact of age and household structure (outside the specific context of COVID-19) falls into two categories: simpler,
analytically tractable models [13} [20-23]] and highly detailed, individual-level simulations, e.g. for national-scale
pandemic influenza [24428]]. Such simulations typically contain hundreds of millions of agents and track individual
households, communities, and workplaces. However, many do not age-stratify contacts at the level of granularity in our
model, instead modeling coarser groups such as school- or work-aged individuals [24} 26} 29], with a few exceptions
[27, 128 130]. Our agent-based model charts a middle course between analytical models and individual-level simulations
by focusing on demography and forgoing features such as detailed simulation of the spatial structure of an entire
country. This ensures computational tractability, while also avoiding overfitting to the limited data currently available
by restricting the number of parameters associated with each agent. While such parsimony limits the granularity of our
simulation, it allows for rapid iteration during an emerging epidemic while focusing on the impact of demography on
COVID-19 modeling and policy.

2 Methods

This section introduces our agent-based model for COVID-19 spread along with methods used to parameterize
the model. Code and data to run the model and reproduce experiments from the study can be found at https:
//github.com/bwilder0/COVID19-Demography.

2.1 Agent-based model description

We develop an agent-based model for COVID-19 spread which accounts for the distributions of age, household types,
comorbidities, and contact between different age groups in a given population. The model follows a susceptible-exposed-
infectious-removed (SEIR) template [11}[14]. Specifically, we simulate a population of n agents (or individuals), each
with an age a;, a set of comorbidities c;, and a household (a set of other agents). We stratify age into ten-year intervals
and incorporate hypertension and diabetes as comorbidities. These comorbidities are common worldwide [31] and have
been associated with a higher risk of in-hospital death for COVID-19 patients [3|]. However, our model can be expanded
to include other comorbidities of interest in the future. The specific procedure we use to sample agents from the joint
distribution of age, household structures, and comorbidities may be found in Appendix [A]

The simulation tracks two states for each individual: the infection state and the isolation state. The infection state
is divided into {susceptible, exposed, infectious, removed}. Susceptible individuals are those who have never been
contacted by an infectious individual. Exposed individuals are those who have had contact with an infectious individual,
though not all exposed individuals become infectious. If an exposed individual contracts the disease, they proceed
to the infectious stateﬂ Infectious is further subdivided into severity levels {asymptomatic, mild, severe, critical}.

!Currently, our simulation implementation does not separately track individuals who are exposed but do not become infected, and
instead groups them with the susceptible population. This is because we assume that, if exposed again, they will become infected
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Figure 1: We use a modified SEIR model, where the infectious states are subdivided into levels of disease severity. The
transitions are probabilistic and there is a time lag for transitioning between states. For example, the magnified section
shows the details of transitions between mild, recovered, and severe states. Each arrow consists of the probability of
transition (e.g., pm—s(a;, ¢;) to progress from mild to severe) as well as the associated time lag for the transition (e.g.
the time ¢ to progression from mild to severe is drawn from an exponential distribution with mean \,,_,s). a; and ¢;
denote the age and set of comorbidities of the infected individual .

We interpret mild severity as symptomatic (but not requiring hospitalization), severe as requiring hospitalization,
and critical as eligible for intensive care unit (ICU) care. The removed state is further subdivided into {recovered,
deceased}. These states and the transitions between them are summarized in Figure|l| Individuals in all severity levels
can transmit the disease, but those in the asymptomatic state do so at a rate o < 1 times that of symptomatic cases. The
decision to incorporate reduced transmission for asymptomatic individuals is based on the fact that, though infection by
asymptomatic individuals has been observed in case clusters and in examinations of serial intervals [32H34]], available
evidence suggests that individuals with no or limited symptoms are less infectious than those with severe symptoms
[6]. Currently, our simulation incorporates two levels of infectiousness (before and after the onset of symptoms), but
it can be adjusted as better information on how viral shedding increases with severity of illness becomes available.
We acknowledge that our assumptions surrounding transmissibility and disease severity — as derived from existing
literature — may serve as a limitation of our model, as many of these factors are evolving over time.

Each individual has a separate isolation state {isolated, not isolated}. If isolated, the individual is unable to infect
others. We assume that (1) asymptomatic individuals are never isolated, (2) mild individuals become isolated over
a mean time of \jsopue days (see Table|l]) after the onset of symptoms, and (3) all severe and critical individuals are
isolated. However, our simulation framework can easily accommodate different sets of assumptions about isolation (for
example, preemptively isolating exposed individuals if they are known to have had contact with an infectious agent).

The disease is transmitted over a contact structure, which is divided into in-household and out-of-household groups.
Each agent has a household consisting of a set of other agents (see Appendix [A]for details on how households are
generated using country-specific census information). Individuals infect members of their households at a higher
rate than out-of-household agents. We model out-of-household transmission using country-specific estimated contact
matrices [35]]. These matrices state the mean number of daily contacts an individual of a particular age strata has with
individuals from each of the other age strata. We assume demographics (including age and household distribution) in
Hubei and Lombardy are well-approximated by country-level data.

The model iterates over a series of discrete time steps, each representing a single day, from a starting time £ to an end
time T'. There are two main components to each time step: disease progression and new infections. The progression
component is modeled by drawing two random variables for each individual each time they change severity levels (e.g.

with the same probability as an individual who has never been exposed. However, the implementation can be modified to support
either differing probabilities of contracting the disease after first exposure or policies that treat exposed and susceptible individuals
differently.



Table 1: Model parameters

Parameter Description Value and/or source

Pm—ss(ai,c;) Prob. of progressing from mild to severe given age a; and comorbidities c; Estimated from China CDC and US CDC data (see below)
Ps—cla;, c;) Prob. of progressing from severe to critical given age a; and comorbidities c; As above

Pedalai,cq) Prob. of progressing from critical to death given age a; and comorbidities c; As above

Ph Prob. of infecting each household member each day Calibrated to match [10]

Dinf Prob. of infecting an outside household contact Free parameter

He—sm Log-mean time to progress from exposed to mild (mean incubation period) 1.621 [38]

cr?,‘_w” Log-standard deviation time to progress from exposed to mild 0.418 [38]

Am—ss Mean time to progress from mild to severe 7 days [39]

As—c Mean time to progress from severe to critical 7.5 days (using 14.5 days from onset to mechanical ventilation in [3])
Aesd Mean time to progress from critical to death 4.5 days (subtracting X, — s and As_, . from onset-to-death in [3]))
Aisolate Mean time for an individual in the mild state to isolate 4.6 days (time to first medical care [40])

Am—s o Mean time to recovery for an individual in the mild state 14 days [39]

As—r Mean time to recovery for an individual in the severe state 28 — Ay — s (midpoint of onset-to-recovery for severe [39])

Ac—sr Mean time to recovery for an individual in the critical state 35 — App—s — As—sc (midpoint of [39] onset-to-recovery for critical)
a Reduction in infectiousness before symptoms 0.55 [G]H

M Contact matrix (for each country) 135]

to First date with at least 5 infected individuals Free parameter

on entering the mild state). The first random variable is Bernoulli and indicates whether the individual will recover
or progress to the next severity level. The second variable represents the amount of time until progression to the next
severity level. We use exponential distributions for almost all time-to-event distributions, a common choice in the
absence of specific distributional information [36,37/]. The exception is the incubation time between asymptomatic
and mild states, where more specific information is available; here, we use a log-normal distribution (see jte—.,, and
o2, in Table[1)) based on estimates by Lauer et al. [38]. Table summarizes all distributions and their parameters,
and Section [2.2]describes how we estimate age- and comorbidity-dependent severity progression.

In the new infections component, individuals in the susceptible state may enter the exposed state. Infected individuals
infect each of their household members with probability p;, at each time step. py, is calibrated so that the total probability
of infecting a household member before either isolation or recovery matches the estimated secondary attack rate for
household members of COVID-19 patients (i.e., the average fraction of household members infected) [[10]]. Infected
individuals draw outside-of-household contacts from the general population using the country-specific contact matrix.
For an infected individual of age group ¢, we sample w;; ~ Poisson(};;) contacts for each age group j, where M is
the country-specific contact matrix. Poisson distributions are a standard choice for modeling contact distributions [35].
Then, we sample w;; contacts of age j uniformly with replacement, and each contact is infected with the probability
Pint, the probability of infection given contact. This probability is an unknown; our experiments test a range of values,
and we report which values give results consistent with observations from Lombardy and Hubei.

One key advantage of our modeling framework is its flexibility; namely, we can modify it to test different policies or
simulate additional features with greater fidelity. Examples of future work that are easily accommodated by our model
include:

o Contact-tracing policies: Our simulation tracks the tree of who-infects-whom, easily enabling the simulation
of policies that trace the tree with a given probability of successfully identifying each contact (the probability
of success potentially varying by household contact or age group).

o Health system capacity: Our simulation tracks the number of individuals at each severity level, allowing us
to match the number of individuals in the critical state to the number of ICU beds per capita in a given area.
We can increase the probability of death for critical individuals once their number exceeds the existing ICU
capacity to model the interaction between ICU capacity and mortality.

e Age-varying adherence to self-isolation for mildly ill individuals: We can alter the probability that a mildly
ill individual will self-isolate based on age group, capturing the hypothesis that younger individuals may
disproportionately fail to isolate while mildly symptomatic.

e Multiple waves of infection: Our current study only models scenarios where interventions are imposed on a
specific date and remain in place thereafter; however, future work could analyze scenarios where interventions
are prematurely removed, leading to potential resurgence of the disease.

2This setting for « is likely pessimistic in that Li et al.’s estimate for reduction in transmissibility is for undocumented cases,
including both asymptomatic cases and those with limited symptoms [6]. Future work should examine the impact of a potentially
lower « as better information on transmissibility in the asymptomatic state becomes available.



2.2 Estimating disease progression from age and comorbidities

Many of the parameters for this model are assigned values based on estimates in the literature, shown in Table [T}
However, we currently lack a detailed understanding of the joint impact of age and comorbidities on disease progression
and mortality. Currently, case fatality rates (CFRs) are available either by age or by individual comorbidity, but not
for each specific combination of age and comorbidities. To obtain these estimates, we model the CFR with a logistic
regression fit to CFRs from the Chinese Center for Disease Control and Prevention (China CDC) [41]]. This model
yields p,,—q(a;, ¢;), the country-independent probability that an individual ¢ of age a; and comborbidity status ¢; will
die if infected with SARS-CoV-2 (see Appendix [B]for more details). Corrections for country-specific differences in
mortality are discussed in Section[2.3]

The simulation also requires specific values for the probabilities of transitioning between the disease states mild, severe,
critical, and death. However, there is currently insufficient information available to infer the probabilities of these
individual transitions for each combination of age and comorbidity. We assume that while the absolute values of these
probabilities may vary based on age and comorbidity, the ratios between them do not exhibit such strong dependency. In
particular, we assume that there are coefficients vs—_.(a;) and vy.— 4 such that ps_.(a;, ¢;) = Vs—c(@;)Pm—s(as, ¢;) and
De—sd(@i) = VesdPm—s (i, ¢;). We allow vs_,.(a;) to be age-specific while assuming that 7., 4 is age-homogeneous
because of the information currently available to estimate them; namely, we estimate v, .(a;) based on the relative
probabilities of hospitalization and ICU admission by age group in the US [42] and ~v,._, 4 based on the probability of
death for all critical patients in China [41]]. Note that we assume both coefficients to be independent of the comorbodities
¢;. Then, we can solve for p,,,s(a;, ¢;) such that

Pm—s (aia Ci) : ’Ys—m(ai)pmas(aiv 011) : ’Yc—>dpm—>s(a1la Ci) = pm—>d(ai7 Ci)a
and set ps—.(a;, ¢;) and p.—4(a;, ¢;) accordingly. Future work can relax the assumptions in this process as more
information becomes available about how age and comorbidity impact the progression between disease states.

2.3 Free parameters

There are three main parameters for which values are not precisely estimated in the literature and are varied in-simulation.
First is piyf, the probability of infection given contact. This determines the level of transmissibility of the disease.
Second is tg, the start time of the infection, which is not precisely characterized in most locations and has a substantial
impact due to rapid doubling times. Third is a parameter dp,,;, which accounts for differences in the rate of mortality
between locations that are not captured by demographic factors in the model (e.g., the impact of limited ICU capacity
in Lombardy). dyy is @ multiplier which is applied to the baseline mortality rate estimated from China CDC data.

3 Results

We use our model to explore the impact of demography on our understanding of existing COVID-19 outbreaks and
potential policies that aim to mitigate such outbreaks. Section [3.1] introduces two case studies where we validate
the model against confirmed deaths due to COVID-19, explore the range of parameter settings consistent with the
data, and illustrate how demography-aware modeling can inform estimates of the rate at which cases are documented.
Documentation rates estimated by our model are generally lower than previous estimates, providing an example of how
incorporating demography can inform inferences about key unknowns by accounting for how age-dependent patterns of
behavior lead to differing disease prevalence across groups. Section [3.2]examines the interplay between different forms
of "salutary sheltering" — a term we coin here to describe individuals who shelter in place irrespective of their exposure
or infectious state — and physical distancing policies, while simultaneously illustrating how demography impacts the
evaluation of these aforementioned policies.

3.1 Validation and inferred parameters

This section instantiates the model for outbreaks in two specific locations: Hubei, China (where the disease originated)
and Lombardy, Italy (one of the most heavily-impacted areas thus far, along with Hubei). We show that our model is
able to reproduce observed patterns in the number of reported deaths and examine how a range of possible underlying
parameters are consistent with the data. Based on this range of parameters (which vary piys, to, and dpyyy), we propose
plausible ranges for o in Hubei and Lombardy, as well as for the rate at which infected individuals are documented.

3.1.1 Hubei, China

We draw a population of individuals from the age, household, and comorbidity distributions for China since more
specific information is not available for Hubei (though the fraction of individuals over 65 is within the typical range for
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Figure 2: Simulated trajectories of the number of deaths over time in Hubei, China compared to the true number of
reported deaths (pi,r = 0.020, o = November 15). Light blue lines are individual trajectories, green is the median,
and the black dots are the number of reported deaths. The red dashed line represents the January 23 lockdown. The
true number of reported deaths is contained within the simulated distribution and lies close to the median (Pearson
r = 0.998).

many Chinese provinces [43]). We simulate a population of 10 million individuals for computational tractabilityll
results, here and in the remainder of the paper, use 100 independent runs of the simulation.

We examine times t( varying around the November 17 date for the first identified patient in Wuhan [45] l46]]. We do
not include d,, as a free parameter (that is, dy,,¢ = 1) because our baseline mortality rates are estimated on China
CDC data drawn mostly from Hubei. We vary piys in the range [0.018, 0.023] and characterize the resulting patterns in
infection spread and fatalities. We simulate through March 21, with a lockdown on January 23. After the lockdown, all
contact frequencies are reduced by a factor of 50, reflecting the reported severity of the restrictions imposed [47]]. In
practice, such constraints correspond to an average of 1 to 2 daily outside-of-household contacts for people aged 15-29
or 30-49, and at most one such contact a day on average for the 50-69 age group [35 48]].

Validating the simulated results is complex because cases are likely substantially underdocumented [44]. We fit to the
number of deaths on the simulation end date as a metric for validation, since deaths are believed to be substantially
better documented, despite the possibility for both underreporting (e.g., viral pneumonia that is not diagnosed as
COVID-19 [49]) and overreporting (e.g., presumed cause of death classified as COVID-19 on death certificates [S0] or
classification of deaths as caused by COVID-19 independent of possible comorbidities [51]]). We assume that all deaths
are documented. Future work could relax this assumption by modeling a location-dependent probability for a death
to be documented. Figure [2]shows the complete distribution of simulation results for one specific set of well-fitting
parameters (pins = 0.020, tg = November 15). We find that the true number of reported deaths is contained within
the simulation distribution and lies close to the median. Moreover, the shape of the curves match closely (Pearson
r = 0.998 between the median of the simulated trajectories and the observations). Note that we only assess goodness
of fit using the last entry of the trajectory, so a close match to the rest of the trajectory provides evidence against the
possibility of overfitting.

While Figure 2] gives one set of plausible parameters, there are also a range of other parameters that fit the data well.
Higher piys can compensate for a later ¢, allowing a given number of deaths to be reached even with a later start date.
Accordingly, Figure [3]shows two outputs of the simulation across the entire parameter range, with heatmap saturation
representing the goodness of fit between the simulated and true number of reported deaths. We measure goodness of fit
by asking whether the true number of reported deaths is well-contained within the simulated distribution. Specifically,
if p is the percentile of the true number of reported deaths in the distribution of the simulation runs, the color of the cell
reflects p(1 — p). A value of 0 represents that the real number of deaths is either greater or smaller than all simulation
runs, and a value of 0.25 (the maximum possible) represents that the real number of deaths is exactly at the 50%
percentile of the simulated distribution. Assessing fit via the mean squared error yields a similar parameter order but is
more difficult to interpret.

3Note that Hubei has a population of approximately 58 million. However, even assuming that the rate of documentation is less
than half of current estimates [44], less than 1% of the population of Hubei was infected by the virus by the end of our simulation on
March 21. The number of simulated individuals is only relevant when the number of infections begins to saturate the population;
otherwise, additional individuals will simply never be encountered in the simulation. 10 million is also comparable to the population
of Wuhan, where most cases were concentrated [41]].
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Figure 3: Left: median r( as a function of pj,¢ (y-axis) and ¢, (z-axis). Right: median fraction of symptomatic cases
documented. Colors indicate the goodness of fit, where darker colors suggest better fit. A large set of parameter settings
(the dark green diagonal entries) are consistent with the data, leading to a range of possible values for r( and the rate of
documentation.

The dark cells along the diagonal have p(1 — p) close to 0.25, indicating that the true number of reported deaths is
well-contained within the simulated distribution across a range of parameter settings. We examine the implications
of this range of possible parameter settings for two quantities of interest: the basic reproduction number ry and the
documentation rate for symptomatic cases.

The left side of Figure 3] shows the inferred pre-lockdown 7 given each set of parameters. The values are consistent
with existing estimates, which largely fall in the range 2-3 [52]]. We calculate a single plausible range for our results,
which includes all values for parameter settings where the percentile p of the true number of reported deaths in the
simulated distribution satisfies p(1 — p) > 0.2, capturing better-fitting parameterizations. For rg, the plausible range is
2.11-2.27.

The right side of Figure [ shows the inferred rate of documentation of symptomatic cases given each set of parameters.
We calculate this by dividing the actual number of confirmed cases in Hubei on the simulation end date by the total
number of symptomatic infections in the simulation. Each cell reports the median over a set of independent simulations
for the corresponding parameters. We find that most scenarios give a somewhat lower rate of documentation than the
range 28-33% estimated by Russell et al. [44]]. This may be due to differences in documentation in Hubei compared
to nationally; however, this would not account for all discrepancies as Hubei experienced most of the cases in China
[41]. At least a portion of this lower documentation rate can instead be attributed to our model’s inclusion of age-
dependent contact patterns and disease severity. Younger individuals may have more total contacts than older individuals
[33] because of school or work. As such, younger individuals would be more likely to become infected,
while also having a lower risk of fatality [47]]. Accordingly, the true CFR among all infected people is expected
to be lower than in estimates that assume an age-homogeneous attack rate [44] (where attack rate denotes the
fraction of a group which is infected). To demonstrate this point, Figure 4] illustrates simulated attack rates by age
for representative parameter settings in both Lombardy and Hubei. As expected, we observe inhomogeneous attack
rates with higher attack rates among younger groups. As a result, the plausible range for the documentation rate in our
simulation is 10.3-19.2% in Hubei. This illustrates how age-dependent behavioral patterns may impact estimates of
important parameters, motivating the inclusion of demographic information in COVID-19 modeling.

3.1.2 Lombardy, Italy

We simulate a population of 10 million individuals (representing the population of Lombardy) drawn from the
Italian distribution of age, household structure, and comorbidity status. The full demographic information needed to
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Figure 5: Simulated trajectories in the number of deaths over time in Lombardy, Italy compared to the true number
of reported deaths (pi,s = 0.029, to = January 22, dp,,, = 4). Light blue lines are individual trajectories, green is the
median, and the black dots give the number of reported deaths. The red dashed line represents the March 8 lockdown in
Lombardy, Italy. Once more, the data are close to the median of the simulated distribution (Pearson r = 0.993).

parameterize the simulation was not available for Lombardy specifically, but available information suggests broadly
similar characteristics (e.g., the median age in Lombardy is 45 [56]], comparable to Italy in general at 46.5 [37])).

Our simulation starts from January 22 and continues till March 22, with a lockdown on March 8. After the lockdown,
the number of contacts for all age groups is reduced by a factor of 10, reflecting a less severe lockdown than in Hubei
[58]. In practical terms, such a level of physical distancing induces an average of 7 to 8 contacts a day for people aged
15-29 or 30-49, while it corresponds with about 3 to 4 interactions on average for the 50-69 age group [35]. We vary the
two parameters pi,r and t( that we examined for Hubei, but now also consider the impact of dy,,.. Recall that dy is a
multiplier to the fatality rate across all ages and comorbidities, which capture location-dependent variation in fatalities
in excess of differences due to demographic factors.

We measure the goodness of fit as in Section [3.1.1} Figures[6and [7]show goodness of fit for a wide range of parameters,
along with the associated estimates for ry and the rate of documentation. Within each figure, each heatmap corresponds
to a different value of dy,,;, the multiplier for fatality rates relative to Hubei. We observe that a wide range of possible
scenarios are consistent with the data. Trajectories for one well-fitting set of parameters with pinr = 0.029, ¢ = January
22 are shown in Figure[5] The true number of reported deaths again closely matches the median of the simulated
distribution (Pearson r = 0.993). January 22nd is a plausible start date because of reports that infected travelers had
landed in Milan by January 23 (meaning that later dates are unlikely). However, these parameter settings are by no
means the only possibility—it is possible that fatality rates in Lombardy are much higher than in Hubei (e.g., by a factor
of 3-5), or that r( is significantly higher in Lombardy than in Hubei. Together, the simulations suggest that both factors
likely contribute. We find broad support for the hypothesis that Lombardy has thus far experienced a more transmissible
and deadlier outbreak in comparison to Hubei 60, [61]]. Section 4] discusses possible explanations for this phenomenon.



dyy =1 dpy —2 e At = 3

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 020 0.25
0.020 - 0.189 0.306 0.431 - o = 0.020 - 0.220 0.307 0.536 0.821 - o 0.020 - 0.184 0.351 0.451 0.748 - -
0.021 - 0.099 0.164 0.299 0.518 = = 0.021 - 0.107 0.154 0.274 0.478 0.901 = 0.021 - 0.118 0.208 0.309 0.456 0.968 =
0.022 - 0.057 0.092 0.212 0.352 0.486 = 0.022 - 0.074 0.101 0.209 0.329 0.564 0.973 0.022 —. 0.104 0.177 0.313 0.590 0.925
0.023 - 0.043 0.069 0.112 0.186 0.438 0.801 0.023 — 0.066 0.127 0.257 0.370 0.717 0.023 - JlUuEt . 0.113 0.219 0.443 0.892

0.132  0.260 0.480

0.024 -/0.024 0.053 0.074 0.149 0.247 0.444 0.024 — 0.077 0.135 0.237 0.502 0.024 — 0.072

0.025 - 0.032 0.047 0.095 0.180 0.325 0.025 0.046 0.108 0.210 0.331 0.025 - 0.016 .

0.026 — 0.032 0.057 0.103 0.265 0.026 - 0.012 0.065 0.112 0.194 0.026 - 0.011 - 0.060 0.124 0.257

0.027 - 0.008 0.024 0.041 0.095 0.152 0.027 - 0.009 ' 0.012 . 0.076 0.156 0.027 - 0.008 0.013 0.077 0.188
=]

Pint
Dinf
Pint

0.098 0.180 0.334

0.028 - 0.006 NeKoARW EoNo¥E:N 0.030 0.056 0.113 0.028 - 0.006 0.009 [0.017 0.051 0.105 0.028 - 0.006 0.010 0.016 0.106
0.029 - 0.005 0.007 {eNo¥A 0.022 0.048 0.067 0.029 - 0.005 0.007 0.011 . 0.036 0.068 0.029 - 0.005 0.007 0.011 KeXoPL] 0.083
o S 9 ) S ) o S 9 5> Q %) o S 9
\,\ \\\’ \,\\' \\\’ \,\q’ \,\(L \,\\’ \,\\ \\’ \,\\' \\'1, \,\ﬁ, \\\’ \,\\' \\\ \,\\’ '\,\q/ \,\
to to to
Ay = 4 [— | Ayt =
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
0.020 - 0.217 0.315 0.566 0.651 - - 0.020 - 0.169 0.270 0.419 0.888 o =

0.021 — 0.194 0.304 0.486 0.940 = 0.021 — 0.172 0.348 0.592 0.847 =

0.022 — 0.108 0.227 0.293 0.621 = 0.022 - 0.114 0.229 0.357 0.532 0.963
0.023 - (e 0.129 0.225 0.353 0.838 0.023 - 0.105 0.225 0.395 0.790
0.024 -. 0.072 0.127 0.258 0.435 0.024 - 0.024 0.129 0.247 0.499
0.025 - 0.018 0.109 0.203 0.393 0.025 - 0.015 0.031 0.162 0.338
0.026 - 0.012 0.021 0.
0.027 - 0.008 0.013 0.024 0.065 0.161 0.027 - 0.009 0.013 0.022 .
0.028 - 0.007 0.009 0.013 ReRVEK} . 0.116 0.028 - 0.007 0.010 0.015 '0.030 0.115
0.029 - 0.006 0.007 0.013 0.022 0.088 0.029 - 0.005 0.007 0.012 0.019 0.090

. . . . . . s " .
S > 6 S D S W e WO D
% N3 % 3 % N3 O 3

NN NN AN AN N\ AR

to to

DPinf
Dinf

0.122 0.201 0.026 - 0.011 0.018 J0J 0.124 0.214

0.112

Figure 6: Fraction of symptomatic cases documented in Lombardy as a function of py,s (y axis) and t( (z axis). From
left to right, top to bottom: a mortality multiplier dy,,, relative to China of 1, 2, 3, 4, 5. Colors indicate goodness of fit
of the parameter settings to the true number of reported deaths on March 21 in Lombardy, with darker cells indicating a
better fit. We again find a wide range of possible parameterizations given the observed data, with a plausible range for
the documentation rate of 1.17-8.04%.
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Figure 7: r¢ during the exponential growth (pre-lockdown) phase in Lombardy as a function of pj, (y axis) and ¢g (x
axis). From left to right, top to bottom: a mortality multiplier dp, relative to China of 1, 2, 3, 4, 5. Colors indicate
goodness of fit of the parameter settings to the true number of reported deaths on March 21 in Lombardy, with darker
cells indicating a better fit. The plausible range for ¢ is 2.50-3.20.
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Documentation rates appear to be lower under most well-fitting parameter settings than previously reported for Italy
overall. Russell et al. [44] reported a 95% confidence interval of 4.6-5.9%, while our model yields a plausible range of
1.17-8.04%. Our plausible ranges broadly agree with Russell et al. [44] that documentation rates are substantially lower
in Lombardy than in China. However, our range contains substantially lower values. By accounting for demographic
factors, a substantially greater disease prevalence in Lombardy is possible. For ry, we obtain the plausible range
2.50-3.20, which is disjointed with (and higher than) the corresponding plausible range for Hubei.

3.2 Containment policies in Lombardy: salutary sheltering and physical distancing

Various interventions have been implemented in different countries to slow the spread of SARS-CoV2. These policies
range from staggering lockdown of entire cities or even countries, such as the two-month Hubei province lockdown
[46] and the ongoing Italian lockdown of Lombardy and 14 neighboring provinces [62], to milder policies such as
physical distancing—the practice of reducing physical interactions across the population as a whole. Within these lie a
range of possible alternatives. Our model allows us to simulate all these policies, along with many others, because we
can implement different forms of daily contact reduction for individual people within specific age groups. For example,
a government could encourage some percentage of a given age group to remain sheltered in place (e.g., members of the
workforce aged 45 and older who are more likely to be able to continue their professional activity from home [63]]),
while the rest of the population can continue commuting to their workplace and engaging in in-person social activities.
The rationale for age-specific policies is two-fold. First, age-specific policies have already been employed in some
countries; in the US for example, the Centers for Disease Control and Prevention (CDC) recommended in early March
that people aged 65 years and older shelter in place [64]. Second, along with other factors such as education level and
occupation type [65], current telecommuting patterns are intrinsically related to age groups—home workers being more
likely to fall into the older age groups as compared to onsite workers [66} 67].

As an initial policy scenario, we investigate to what extent the epidemic can be mitigated by encouraging a single age
group to engage in "salutary sheltering" or whether the broader population must also be asked to adopt some form of
physical distancing. For example, even those who do not shelter in place could have their work hours staggered to
reduce contact, be prescribed specific times to shop for groceries, and so on. Accordingly, we compare two scenarios.
In the first scenario, we simulate salutary sheltering for a fraction of a single age cohort while leaving the rest of the
population’s behavior unaltered. In the second scenario, not only do we simulate salutary sheltering for a fraction of a
single age cohort, but we also simulate physical distancing measures among the rest of the population.

In either scenario, we simulate 50% or 100% of a single age cohort as engaged in salutary sheltering. We run these
simulations such that (some fraction of) cohorts aged 0-14, 15-29, 30-49, 50-69, and 70 years and older engage in
salutary sheltering, to study where targeting such a policy may have the greatest impact, on the total percentage of the
population infected, the total (cumulative) number of deaths, or both. We model salutary sheltering as removing all
between-household contacts for the "sheltered" individuals, though they are still able to infect and be infected by their
household members. We model physical distancing as reducing the expected number of daily contacts between non-
sheltered individuals of any two age groups by a factor of two. Here, we study the effect of these transmission-mitigating
policies in the Lombardy region of Italy because the epidemic is still ongoing there [62]], unlike in Hubei where the
situation is currently under control and the end of the lockdown has been officially announced [46]. Throughout this
section, we use the same parameter values as in Figure E] (Pinf = 0.029, tg = January 22, dyy = 4), and simulate a
scenario where a given policy is implemented on day 46 of the simulation (corresponding to the timing of the actual
lockdown in Lombardy on March 8).

Figure [8| shows the first policy scenario, where a portion of a single age group engages in salutary sheltering but the rest
of the population does not adopt physical distancing. The left plots (Figures [§[(a) and [§c)) show salutary sheltering of
50% of a single age group, while the right plots (Figures[8(b) and[8{(d)) show salutary sheltering of 100% of a single age
group. We evaluate these interventions according to two metrics: the percentage of the entire population that is infected
(top row) and the total number of deaths (bottom row). Each colored line shows the impact of salutary sheltering of
a single given age group. In addition, we consider three baselines policies: the gray dotted curve reflects a baseline
scenario with no intervention (no salutary sheltering, no physical distancingﬂ and the blue and pink dotted curves
correspond to baselines where 50% and 100% of the entire population would engage in salutary sheltering, respectively.

“To put our projections into perspective and assess the credibility of the estimated percentage of infected, we compare the "no
intervention" projections to a standard SEIR model [68]. When using the well-fitting set of parameters pinr = 0.029, to = January 22,
and dmun = 4, Figure[7] gives an estimated 7o of 3.16. For this 7o, the standard SEIR model predicts that 95% of the population is
eventually infected. Our "no intervention" baseline plateaus at approximately 90% infected, with the difference attributable to the
fact that even our baseline scenario contains isolation of individuals in the severely and critically infected states, along with isolation
of some mildly infected individuals as determined by the mean time-to-isolation parameter Aisolare- Beyond the standard SEIR model,
the fraction infected in “no intervention" baseline is also broadly consistent with other estimates in the literature [69H71].
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Figure 8: Effect of salutary sheltering for a fraction of each age cohort on the percentage of the population infected (top
row, (a) and (b)) and the total number of deaths (bottom row, (c) and (d)), on a four-month horizon after the beginning
of the outbreak in Lombardy on January 22 and in the absence of any physical distancing measure for other individuals.
Left side, (a) and (c): salutary sheltering 50% of a single given age cohort in place. Right side, (b) and (d): salutary
sheltering 100% of a single given age cohort. The red vertical dashed line indicates the start of the intervention, set to
match the real March 8 lockdown in Lombardy. Each solid colored curve represents sheltering a specific age cohort
in place, while the gray dotted curve represents the “no intervention” scenario (no salutary sheltering, no physical
distancing), and the blue and pink dotted curves correspond to baselines where 50% and 100% of the population would
be sheltered, respectively.

It is worth noting that while there is no difference on average between 100% of the whole population reducing their
physical interactions by a factor of 2 (i.e., physical distancing) and having 50% of the whole population engage in
salutary sheltering, the variance in the number of daily contacts—limited to household members—an individual may have
in the latter is much lower.

In the case of Lombardy, Italy, we observe that even complete shelter in place of any single age group leaves at least
60% of the population infected (Figure 8b)), and nearly 70-80% in the more realistic scenario where only half the group
engages in sheltering (Figure [8a)). Notably, the only policies that limit the percentage of infected, or the total number of
deaths, would require the sheltering of 50% ((a) and (c)) to 100% ((b) and (d)) of the entire population. Except for these
two scenarios, illustrated by the blue and pink dotted curves respectively, the total number of deaths as projected by
our model in Lombardy, Italy is correspondingly large (above 200 thousand) in the absence of any level of physical
distancing and can only be significantly ameliorated by completely sheltering the entire population of 70 years and
older — an intervention that would be both unreasonable and unjust, irrespective of age group (Figure [8d).

However, combining partial salutary sheltering of a single age group with physical distancing by the rest of the
population has a substantially greater impact, as shown in Figure [9|for Lombardy, Italy. Four months from the beginning
of the outbreak, the fraction of the population infected drops to 50% or below (depending on which age group, and what
percentage, is sheltered). The total number of deaths projected for this time horizon decreases even more substantially,
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Figure 9: Effect of salutary sheltering for a fraction of each age group on the percentage of the population infected (top
row, (a) and (b)) and the total number of deaths (bottom row, (c) and (d)), on a four-month horizon after the beginning
of the outbreak in Lombardy on January 22 combined with physical distancing by the rest of the population. Left-hand
side, (a) and (c): salutary sheltering of 50% of a single given age group in place. Right-hand side, (b) and (d): salutary
sheltering of 100% of a single given age group. The red vertical dashed line indicates the start of the intervention, set to
match the real March 8 lockdown in Lombardy. Each solid colored curve represents sheltering a specific age cohort
in place, while the gray dotted curve represents the “no intervention” scenario (no salutary sheltering, no physical
distancing), and the blue and pink dotted curves correspond to baselines where 50% and 100% of the population would
be sheltered, respectively.

to the range of 100150 thousand (as compared to 275-400 thousand for the previous scenario with 50% sheltering by
a single age group and no population-wide physical distancing). In this scenario, where physical distancing is adopted
by everyone, there is only a small benefit, particularly with respect to total deaths, to sheltering 100% of an age group
(Ob]and Od) instead of 50% (9a)and [Oc). Further, the age group sheltered need not necessarily be the 70+ group; in fact,
50% salutary sheltering of the 30-49 age group in Lombardy, Italy has a somewhat larger impact. This is associated
with a higher level of physical interactions on a daily basis among members of this generation [33], especially given
that Lombardy is the second most densely populated region in Italy, home to the economic capital Milan. The fact that
we observe differences in the effectiveness of sheltering different age groups in Lombardy, Italy thus stems from the
interplay of the relative size of each age group [[72]], daily contact patterns (younger groups have more interactions
within and outside their generation [35]]), and risk of mortality from the disease (older groups are at higher risk [3 [64]).
It is worth noting that the greater impact of the 30-49 age group cannot solely be explained by their prevalence in
Lombardy. While this age group accounts for 26% of Italians, they are only the second largest generation after the
50-69 age group that represents 28% of the population [72].

Building upon the case of Lombardy, Italy, our model suggests that hybrid policies, combining targeted salutary
sheltering by one part of the population and physical distancing by the rest, could be as effective at limiting the final
size of the outbreak as salutary sheltering of an entire sub-population, while preserving our social ties and avoiding
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complete disruption of the economy. Future work can use our model to more closely investigate policies which account
for these differences and formulate targeted recommendations about levels of salutary sheltering and physical distancing
by age group or any other suitable stratification adapted to the country’s population and workforce. Such an analysis
would be able to draw on additional information related to demography, for example the fraction of a given age group
readily prepared to work from home (which has been studied in the labor economics and urban planning literature, for
both industrialized [66, 73] and developing countries [74]]). To the extent to which such physical distancing measures
are compliant with citizen rights and the social acceptance of restricted movement mandated by either national or local
governments, corporations, or any other institutions responsible for their practical enforcement, these policies should
be adapted to the political system in place, as well as the social characteristics of each country—a capability that our
model incorporates.

4 Discussion and future work

In this study, we developed a model of SARS-CoV2 transmission that incorporates household distribution, age, and
comorbidities in Hubei, China, and Lombardy, Italy and created population simulations using available demographic
information from these two locations. Our findings suggest that population-wide sheltering in place may not be
necessary to mitigate the spread of COVID-19; instead, targeted salutary sheltering of specific age groups combined
with adherence to physical distancing on the part of the general population may be sufficient to thwart a substantial
fraction of cases and deaths. This could be achieved by engaging in activities such as staggered work schedules,
increasing spacing in restaurants, and prescribing times to use the gym or grocery store.

From a pragmatic perspective, targeted salutary sheltering may not be realistic for all populations. The feasibility of
such a policy relies on those who have access to safe shelter, which does not reflect reality for all individuals. In addition,
while this model illustrates that targeted salutary sheltering in combination with widespread physical distancing may
decrease transmission of SARS-CoV2, sociopolitical realities may render this recommendation more feasible in certain
populations as compared to others. Concerns for personal liberty, discrimination against certain sub-segments of the
population, and broad-based societal acceptability may prevent the successful adoption of targeted salutary sheltering in
some regions of the world. Allowing salutary sheltering to operate on a voluntary basis that is predicated on the use of a
shift system (rather than for indefinite time periods) may address some of these issues.

Existing modeling work of COVID-19 largely focuses on simpler compartmental or branching process models that
do not consider demography and thus do not allow for the simulation of creative policies like those aforementioned.
Furthermore, while such models have played an important role in estimating key parameters such as rq S, 7] or the
rate at which cases are documented [[75]], as well as in the evaluation of prospective non-pharmaceutical interventions
[76-78]], they are not able to characterize how differences in demography impact the course of an epidemic in a
particular location. Our focus on population-specific demography allows for further refinement of current mortality
estimates and is a strength of this study. 7 estimates in this study are generally comparable to other estimates in the
literature to date [52]], although our model yields estimates that were higher in Lombardy as compared to Hubei. While
the reasons behind this are uncertain, factors including mask-wearing practices in certain regions compared to others
[79-81] or differential adoption of behavioral interventions such as hand hygiene [82]] may have contributed to these
findings. Similarly, our model suggests a higher mortality rate in Lombardy than Hubei for reasons beyond demography.
The explanation for this discrepancy is likely multifactorial, including differences in ICU capacity [83], coordination
problems in Lombardy specifically to transport patients where there was capacity [83\ 184], documented prevalence of
antibiotic resistance affecting outcomes in patients affected by secondary bacterial infections [85], and perhaps greater
background population exposure to other novel coronaviruses in China [86].

Reporting rates estimated in this study were generally lower than those that have been established via prior studies
[44]. This is likely due to our simulations producing infection rates that are not homogeneous across age groups.
Heterogeneous infection rates are attributable, at least in part, to that conception that younger people may have more
contacts compared to other age groups [35} 148,153 154].

Our model has the advantage of being parsimonious while also considering these aforementioned heterogeneities,
which is a highly desirable feature given uncertainties in data reporting. Notably, this limits the risk of overfitting when
estimating the conditional probability of death.

Nevertheless, this study has several limitations that should be acknowledged. While several comorbidities associated
with mortality in COVID-19 were accounted for in this model, the availability of existing data limited the incorporation
of all relevant comorbidities. Most notably, chronic pulmonary disease was not included in this study although it has
been associated with morbidity and mortality in COVID-19 [41], nor was smoking, despite its prevalence in both China
and Italy [87, I88]]. Gender-mediated differences were also excluded, which may be important for both behavioral
reasons (e.g., adoption of hand-washing [89,/90]) and biological reasons (e.g, the potential protective role of estrogen in
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SARS-CoV infections [91]). All of these factors can be incorporated into the model in our future work, particularly as
better data becomes available.

Additionally, it is worth noting that we have not yet attempted to model super-spreader events in our existing framework.
Such events may have been especially consequential in South Korea [92], and future work could attempt to more closely
model the epidemic there via the incorporation of a dispersion parameter into the contact distribution, which has been
used in other models [5]].

Despite these limitations, this study demonstrates the importance of considering population and household demographics
when attempting to better define transmission dynamics for COVID-19. In addition, this model highlights potential
policy implications for non-pharmaceutical interventions that account for population-specific demographic features and
may provide alternative strategies for national and regional governments moving forward.
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A Sampling agents

Our process for sampling agents follows three steps that successively sample households, individual agents within
households, and comorbidities for each agent. Because the full joint distributions over all of these quantities are not
known, we implement a sampling procedure that respects the marginal distributions of household structure and age, as
well as the marginal distribution for the occurrence of comorbidities within each age group.

First, we use information on the distribution of household structures to draw a type of household (e.g., single person,
couple, nuclear family, or multigenerational family). Second, we sample the ages of the individual agents according to
their role in the household (e.g., parent, child, or grandparent) combined with information about the age distribution of
the population and the intergenerational interval. For China, we use household distributions from the 2010 Chinese
census [93], intergenerational intervals from He et al. [94], and the age distribution provided by UN population
statistics [[72]. For Italy, we use demographic statistics from Statista online portal about the following: household
structure distribution [95], single-person households [96], couples with children [97] and corresponding family size
[98], and single parents with children [99]. Furthermore, we assume that children could stay within the family until the
age of 30 and that couples without children were aged 30+, to account for societal patterns reported in familial studies
which may have affected household distribution metrics [L00]. Third, we sample comorbidities from the corresponding
country- and age-specific distributions. For China, we use estimates on age-specific prevalence of diabetes [101] and
hypertension [102]]. For Italy, we use estimates from the Global Burden of Disease study on diabetes [31] and a recent
study of age-stratified hypertension prevalence [103]. We ensure that diabetes and hypertension are appropriately
correlated using a single global estimate for the probability of hypertension in individuals with diabetes [104].

B Estimating mortality from age and comorbidities
We require a model of p,,,—4(a;, ¢;), however existing data sources only specify p,,—q(a;) and p,,—q(c;). To infer the
joint distribution, we assume a linear (logistic) interaction between age bracket, diabetes status, and hypertension status.

Specifically, we assume

Pm—d(ai,ci) = U(Bage(ai) + Baiabetes 1 [diabetes € ¢;] 4 Bhypertension 1 [Nypertension € ¢;] )
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where [3,4¢(a;) has a value for each age bracket (e.g., 20-30, 30-40, etc., 7 in total) and Sgiapetes aNd Shypertension are
scalars.

The marginal distributions p,,,q4(a;) and p,,,q(c;) are reported by China CDC [41]]. We obtained data from the
literature on the prevalence of diabetes and hypertension [102] in China by age [101], as well as a single global estimate
of p(hypertension|diabetes) [104]. We assume that these distributions are the same in COVID-19 patients as in the
general population. Given this information, we use gradient descent to find a set of parameters 5 which minimize the
mean squared error in the following marginal consistency constraints:

Pm—d(a;) = Z p(diabetes, hypertension|a;)p.,,—q(a;, diabetes, hypertension), Va,,
diabetes,hypertension

Pm—d(diabetes) = Z p(a;|diabetes) Z p(hypertension|a;, diabetes)p,, 4 (a;, diabetes, hypertension),

a; hypertension

DPm—sq(hypertension) = Z p(a;|hypertension) Z p(diabetes|a;, hypertension)p,, 4 (a;, diabetes, hypertension)

a; diabetes

The set of estimated parameters are

/Bdiabetes = 1.35,
/Bhypenension = 1.69.

Over 10 random restarts, the marginal values were always fit to within numerical tolerance by the same set of parameters
(less than 0.1% maximum difference in the value of a parameter between runs). This suggests that the model parameters
are fully identifiable in this setting. We conclude that the impact of comorbidities is large relative to age; having diabetes
or hypertension is estimated to be roughly as impactful as moving from the 50-60 age group to the 70-80 age group. As
a baseline, the model estimates that if the entire Chinese population were to contract COVID-19, the CFR would be
1.34%.
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