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ABSTRACT
Clinical machine learning models experience significantly degraded
performance in datasets not seen during training, e.g., new hospi-
tals or populations. Recent developments in domain generalization
offer a promising solution to this problem by creating models that
learn invariances across environments. In this work, we bench-
mark the performance of eight domain generalization methods
on multi-site clinical time series and medical imaging data. We
introduce a framework to induce synthetic but realistic domain
shifts and sampling bias to stress-test these methods over existing
non-healthcare benchmarks. We find that current domain gener-
alization methods do not consistently achieve significant gains in
out-of-distribution performance over empirical risk minimization
on real-world medical imaging data, in line with prior work on gen-
eral imaging datasets. However, a subset of realistic induced-shift
scenarios in clinical time series data do exhibit limited performance
gains. We characterize these scenarios in detail, and recommend
best practices for domain generalization in the clinical setting.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing → Health informatics; • General and reference →
Empirical studies.
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1 INTRODUCTION
As machine learning models become more prevalent in clinical
settings, it is important to consider how well models can generalize
to environments external to their training environment [16, 17,
42, 75]. Current large-scale clinical machine learning models often
utilize data from a single site in urban population centers, such as
the Beth Israel Deaconess Medical Center in Boston for the MIMIC-
III dataset [39]. If models trained on these datasets are deployed in
other regions or countries, it is important that their performance
degradation is minimal.

Prior work has found significant decreases in model performance
under the presence of cross-institutional domain shift, in the chest
X-ray [21, 63, 84], MRI [5, 50], and pathology [73, 74, 77] settings.
Temporal domain shifts have also been found to reduce performance
in clinical machine learning models [53]. Recent developments
in domain generalization present a way to combat this problem
by learning models that are invariant across environments while
ignoring environment-specific spurious correlations [6].

In this work, we focus on the domain generalization learning
setup, where a model is learnt on data from multiple training en-
vironments, e.g., hospitals, labs, or regions, and evaluated directly
on an unseen test environment without further fine-tuning [32]. In
our setting, no data from the test environment is accessible to the
model during training.

There are several methods that have been developed for domain
generalization. The naive baseline is to use empirical risk mini-
mization (ERM) to learn a single model on pooled data across all
training environments. Another approach is invariant causal predic-
tion, which assumes the existence of a shared causal graph across all
environments, and seeks to discover a subset of invariant features
using conditional independence tests [34, 59]. Recent extensions of
this work relax many of its assumptions and are computationally
feasible for large datasets [2, 6]. Other methods attempt to learn a
representation that has the same distribution across the training
environments [25, 30, 49, 52], e.g., with an adversary, or attempt
meta-learning from the assumed meta-distribution where all envi-
ronments are drawn [27, 48]. The computer vision literature has
also created methods that rely on data augmentation techniques
and auxiliary tasks which are specific to the image domain [11, 15].
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In this work, we focus on domain generalization methods which
are data modality agnostic, i.e., can be applied to tabular, time se-
ries, or image data alike. Domain generalization methods in the
literature have been largely benchmarked on datasets where spu-
rious correlations are introduced in a contrived manner, such as
Colored MNIST [6] or Colored Fashion MNIST [2]. More realistic
recent evaluations have demonstrated that no domain generaliza-
tion algorithm significantly outperforms ERM on standard image
classification datasets [32]. Similarly, Koh et al. [44] found that two
domain generalization methods often actually perform significantly
worse than ERM on seven real-world datasets spanning text, image,
and graph modalities.

We evaluate the performance of eight algorithms on domain
generalization in clinical time series data from intensive care units
(ICUs) across four regions [62] and chest x-ray imaging data from
four sites [14, 37, 38, 80]. The clinical setting presents a realistic
domain for benchmarking methods that might be trained in one
site, but deployed in another. We also manually introduce realistic
sampling bias in the data to test the limits of these methods in sites
with further shift. We present these clinical confounding and sam-
pling bias scenarios as a general empirical framework to stress-test
generalization methods. Our main contributions are the following:

• We show that state of the art domain generalizations do not
consistently perform significantly better than ERM on real-
world clinical imaging data. This is consistent with results
from prior work on general benchmarking datasets [32, 44].

• We introduce a framework which generates plausible aug-
mented versions of clinical datasets with domain shift. While
there are realistic clinical scenarios where domain general-
ization perform marginally better than ERM, these improve-
ments only manifest when the strength of the spurious cor-
relation is strong.

• Wefind, in the case of subsampled datasets with varying label
prevalence between genders, that domain generalization
methods are not able to learn fairer models than ERM while
maintaining overall model performance.

• We publicly release the code and framework to reproduce
our data and results1, based on a modified version of the
DomainBed [32] platform.

We hope this framework will be used as a realistic clinical gen-
eralization scenario against which domain generalization methods
can be benchmarked.

2 RELATEDWORKS
2.1 Domain Generalization Methods
In the domain generalization learning setup, we are given labelled
data frommultiple training environments, and seek to learn a model
whose performance generalizes to unseen test environments. Ap-
proaches based on causality stemmed from the Invariant Causal
Prediction (ICP) method proposed by Peters et al. [59], which as-
sumes the existence of a causal graph and uses conditional inde-
pendence tests to find a set of invariant features. Followup work
include extensions to non-linear models [34] and the use of anchor
variables [68]. However, finding this invariant feature set involves a

1https://github.com/MLforHealth/ClinicalDG

combinatorial search over the feature space, and these conditional
independence tests often make many distributional assumptions.

Domain generalization from robust optimization [10] seeks to
minimize theworst-case error in the training environments. Krueger
et al. [46] introduced the principle of risk extrapolation, which is a
generalized form of robust optimization. Xie et al. [82] derived a
slightly altered risk extrapolation loss function and linked distri-
butional robustness with causality. Methods like GroupDRO [69],
conventionally used in the subpopulation shift setting, has also
been tested for domain generalization [32].

Another approach to domain generalization aims to remove all
environment information from a latent representation, or, alterna-
tively, learn an encoder such that all environments have the same
latent distribution. This can be accomplished with an adversarial
network [25, 30], the MaximumMean Discrepency (MMD) loss [49],
or by directly minimizing mutual information [52]. Methods based
on low-rank decomposition have also been proposed. These meth-
ods seek to learn a component that is common among all environ-
ments, and a component that is specific to each training domain.
The common component is then used for out-of-distribution (OOD)
generalization [47, 61].

Several methods have been proposed specific to the image do-
main. Zhang et al. [85] proposed a data augmentation based ap-
proach where a series of stacked transformations are applied. Car-
lucci et al. [15] proposed an auxiliary task for neural network train-
ing where the network learns to solve a jigsaw puzzle consisting of
shuffled patches of an image. Benton et al. [11] introduced a method
where the model automatically learns invariant affine augmenta-
tions from the training data. Hendrycks et al. [35] proposed an
image augmentation method involving applying randomly sampled
operations to the weights and activations of an image autoencoder,
though it could potentially be applicable to other modalities as well.
In this work, we focus only on methods that are modality agnostic.

The invariant risk minimization (IRM) method proposed by Ar-
jovsky et al. [6] frames domain generalization as a bi-level optimiza-
tion problem. In addition to alleviating the distributional assump-
tions of ICP, their optimization problem can be simplified to a loss
function compatible with gradient descent that can easily be applied
to large datasets. Ahuja et al. [2] proposed an alternate method for
solving the same bilevel optimization problem by finding the Nash
equilibrium of an ensemble game.

2.2 Model Transferrability in Medical Settings
Access to large annotated datasets to train deep neural networks
across multiple sites is not always feasible in clinical settings. Trans-
fer learning [57] addresses this by using a model pretrained on a
large-scale dataset and fine-tuning it to the downstream task. This
method has been commonly used in designing medical image clas-
sifiers [4, 37, 66, 70, 80]. In these settings, the deep neural network
is initialized with a pretrained model (for example, trained on Ima-
geNet [24]) and then are finetuned on downstream medical images.
Transfer learning has been shown to be effective at increasing
model performance in chest X-ray classifiers [66, 70], though there
are cases where a model trained from scratch can perform just as
well [64].

https://github.com/MLforHealth/ClinicalDG
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In the transfer learning framework, we are given labelled data
for the target domain. A related framework is unsupervised domain
adaptation, where we are only given unlabelled data for the target
domain. Unsupervised domain adaptation has also been applied
to medical imaging [26, 58, 86]. Our benchmark focuses on the do-
main generalization setting, where only labeled data from multiple
training environments are available, and the goal is to be able to
generalize to all unseen test domains.

There have been a limited number of papers which apply do-
main generalization methods to health data. In their WILDS bench-
mark, Koh et al. [44] tested two domain generalization methods
on the Camelyon17 dataset for tumor identification [7], finding
that they both performed worse than ERM by more than 10% ac-
curacy. Ghimire et al. [31] benchmarked the performance of the
IRM Games method [2] on pneumonia detection in four chest X-ray
environments, finding that it gave marginal improvements to OOD
performance. Bellot and van der Schaar [9] also test their proposed
method on pneumonia detection using chest X-ray datasets from
two hospitals. However, as there is a significant overlap between
the training and test domains in their experimental setup, it would
be better suited as a subpopulation shift problem [44] rather than a
domain generalization one.

2.3 Domain Generalization and Fairness
Fairness criteria have grown in popularity in recent years due to
the increasing use of machine learning models in settings such as
healthcare [8, 18, 60, 65, 78, 81], where poor performance of models
on certain subgroups can lead to significant harm. Common group
fairness metrics, such as statistic parity, equalized odds, and equal-
ity of opportunity consider fairness through various independence
definitions, typically between the random variables of the true label,
predicted label and protected attribute (attribute determining sub-
groups) [33]. Many group fairness objectives focus on minimizing
the worst-case performance or the gap in performance according
to certain metrics (such as parity, recall, etc.) across subgroups [41].

Domain generalization methods, as described in Section 2.1, sim-
ilarly aim to minimize the worst-case risk across all possible en-
vironments. State-of-the-art algorithms, such as GroupDRO, have
arguably been motivated by improvement to both group fairness
and generalization performance [25, 69]. There has been some
recent literature investigating the relationship between domain
generalization and fairness [1, 23, 25], and some analysis of group
and individual fairness constraints on generalization ability [22, 71].

Within the IRM objective, Creager et al. [23] improves worst-case
performance without access to protected group labels in order to
develop a generalization method for settings in which the domain
labels are not provided. This paper also demonstrated that the IRM
objective can be framed to directly optimize group sufficiency if
the protected attribute label is taken as the environment variable.
Adragna et al. [1] provided empirical results for the gains IRM offers
over ERM in terms of fairness guarantees through comparing the
ability of both objectives to be invariant to spurious correlations
between comment toxicity and particular demographic groups in
internet comment datasets.

In this work, we add to existing empirical results linking domain
generalization and fairness to investigate this relationship in a
clinical context.

2.4 Domain Generalization Benchmarks
The large majority of state-of-the-art domain generalization meth-
ods are tested on variants of MNIST (such as ColoredMNIST) where
a spurious correlation (such as a correlation between the channel
and the label) are introduced synthetically [6, 45, 56]. Choe et al.
[19] proposed Extended Colored MNIST – a version of Colored
MNIST with varying data generation parameters. They benchmark
the performance of IRM and ERM on this dataset, along with a sen-
timent analysis dataset where punctuation is manually confound
with the label.

Two large-scale domain generalization benchmarks have been
proposed. Gulrajani and Lopez-Paz [32] proposed the DomainBed
platform,which tests 15methods on seven image benchmark datasets
classically used for domain adaptation. One example is the PACS
dataset [47], where the environments consist of photo, artistic, car-
toon, or sketch renditions of objects. Though these datasets are
much more realistic than Colored MNIST, they still have limited
real-world utility. Gulrajani and Lopez-Paz [32] found that domain
generalization methods do not significantly out-perform ERM con-
sistently. Koh et al. [44] proposed the WILDS benchmark, which
consists of seven real-world datasets spanning a variety of domains,
including satellite imagery, cancer pathology, molecular graphs,
and sentiment analysis. They tested two domain generalization
methods – IRM [6] and DeepCORAL [76] – and found that nei-
ther of the methods improve over ERM performance on any of the
datasets.

In this work, we benchmark the performance of eight domain
generalization methods on two real-world clinical datasets. In addi-
tion to the base datasets, we propose a framework for augmenting
clinical datasets via synthetic domain shifts and sampling bias. We
hope that this framework will bridge the gap between the state-
of-the-art performance that domain generalization methods have
shown on the contrived Colored MNIST dataset, and their poor
performance on real-world datasets as demonstrated by the two
other benchmarks.

3 METHODS
In the domain generalization setup, we are given labelled data
{(𝑥𝑒

𝑖
, 𝑦𝑒

𝑖
)}𝑛

𝑖=1, from multiple training environments 𝑒 ∈ E𝑡𝑟 , as
well as a risk function 𝑅𝑒 (𝑓 ) = E𝑋𝑒 ,𝑌𝑒 [ℓ (𝑓 (𝑋𝑒 ), 𝑌𝑒 )]. The goal
is to learn a predictor 𝑓 : 𝑋 → 𝑌 that minimizes the worst-case
risk across all possible environments 𝑅𝑂𝑂𝐷 (𝑓 ) = max𝑒∈E𝑎𝑙𝑙

𝑅𝑒 (𝑓 ).
In practice, we typically evaluate the performance of a domain
generalization method by evaluating the risk of its learnt predictor
on some unseen test environment 𝑅𝑒𝑡𝑒𝑠𝑡 (𝑓 ).

3.1 Domain Generalization Algorithms
We test the performance of the following eight algorithms:

• Empirical Risk Minimization (ERM, [79]) minimizes loss
over pooled data across all training environments.

• GroupDistributionally Robust Optimization (GroupDRO, [69])
minimizes the loss of the worst-case training environment.
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Figure 1: Procedure for conducting domain generalization experiments. 1. We select a dataset consisting of multiple environ-
ments. 2. We choose a synthetic shift. Causal graphs are shown for (a) the base dataset; (b) addition of the corrupted label (𝑋 ′)
as a feature; (c) additional of noise 𝜖 that is correlated with the label to a feature �̃� to create a new feature 𝑋 ′; (d) subsampling
based on a binary feature 𝑋 ′, where 𝑋 ′ is unobserved, and (e) subsampling based on a binary feature 𝑋 ′, where 𝑋 ′ is observed.
Multi-dimensional random variables are shown in bold. Shaded nodes denote variables that are observed by the model. 3. We
select a domain generalization algorithm. 4. We choose a strategy to conduct model selection.

• Invariant Risk Minimization (IRM, [6]) learns a predictor
that is invariant across training environments by optimizing
the data representation such that all domains have the same
downstream classifier.

• Variance Risk Extrapolation (VREx, [46]) minimizes the
training risks along with the variance of the training risks
across environments.

• Risk Variance Penalization (RVP, [82]) minimizes the train-
ing risks along with the standard deviation of the training
risks across environments.

• Maximal Invariant Predictor by Inner-environmental Gradi-
ent Alignment (IGA, [45]) learns the optimal classifier such
that the label is independent of the environment index given
the data representation.

• Deep Correlation Alignment for Deep Domain Adaptation
(CORAL, [76]) aligns the mean and covariance of latent
distributions across domains.

• Meta-Learning for Domain Generalization (MLDG, [48])
adapts the model-agnostic meta-learning method [29] to the
domain generalization setting.

We also report the performance of two “oracles”, correspond-
ing to models that do have access to the test environment during
training:

• OracleID: train an ERM classifier only on the training split
of the test environment. Note that this is not invariant model,
as it would learn spurious correlations that exist on the test
domain.

• OracleMerged: train an ERM classifier on the pooled train-
ing splits across all environments.

The difference in performance between the oracles and the ERM
model is a proxy measure of how distinct the test environment is
from the training environments. The performance of the oracle
models is also an informal upper bound for the performance that
any of the eight algorithms can hope to achieve.

3.2 Model Selection Strategies
Model selection is a crucial part of a domain generalization experi-
ment [32]. It is not realistic to assume that the test environment is
available for model selection, i.e., during hyperparameter tuning or
early stopping, as is done in Colored MNIST; Gulrajani and Lopez-
Paz [32] observed that most of the performance gains on Colored
MNIST by domain generalization methods vanish when the test
environment is not used for model selection.

We consider two potential model selection methods for all ex-
periments to critically evaluate the impact of the model selection
policy on generalization performance:
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• Selection by Training Domain: We split the data for each
training environment into training, validation, and test sets.
We use the validation sets pooled across all training envi-
ronments for model selection. This model selection method
does not require any data external to the training environ-
ments, but it is unclear that the training domain validation
sets would be a good measure of OOD performance.

• Selection by Validation Domain: We designate a specific
environment as the validation environment. The data from
the validation environment is used only for model selection.
In later manual augmentation experiments, we assign the
validation environment to have an intermediate level of spu-
rious correlation, between the training environments and
the test environment. This simulates the case where limited
information is available from an environment closer to the
deployment target.

4 SYNTHETIC DOMAIN SHIFT FRAMEWORK
We experiment with five types of synthetic domain shifts, shown
in Figure 1. the unmodified dataset (Base), a noise corrupted label
(CorrLabel), a feature-correlated corrupted label (CorrNoise), and
biased subsampling (BiasSampUnobs and BiasSampObs).

4.1 Unmodified Dataset (Base)
This corresponds to the Base graph shown in Figure 1. For simplic-
ity, we merge all features into a single node X. However, complex
causal relationships exist between the features and the label – some
of the features may be invariant, and some of which may be spuri-
ously correlated with the label.

4.2 Corrupted Label as Feature (CorrLabel)
We create a new binary feature 𝑋 ′ by flipping the target 𝑌 with a
certain environment specific probability 𝑝𝑒 . We append this feature
to the dataset and treat it as a static feature during modelling. The
causal graph for this augmentation is shown in Figure 1.

We fix the flip probability for the validation and test environment
to 𝑝𝑣𝑎𝑙 = 0.5 and 𝑝𝑡𝑒𝑠𝑡 = 0.9. For the training environments, we use
(𝑝𝑒1, 𝑝𝑒2, 𝑝𝑒3) = (𝛽 − 𝛿, 𝛽, 𝛽 + 𝛿), where 𝛽 is the mean probability
between the three environments, and 𝛿 is the distance between
each environment. As IRM requires that the training environments
are diverse enough to learn invariances [6], some distance between
the training environments is required. We fix 𝛿 = 0.1, and vary
𝛽 ∈ {0.1, 0.3, 0.5}.

Here, the goal of domain generalization is to learn a model that
completely ignores 𝑋 ′, as its correlation with the label 𝑝 (𝑌 |𝑋 ′) is
varying in the training environments, and is flipped for the test
environment. In the medical setting, this would represent a scenario
where a strong spurious correlation exists in one environment, and
is not generalizable to external environments. For this augmenta-
tion, we also include the performance of the Unaugmented ERM
model (ERM Unaug) for reference, which is the performance of
the ERMmodel from Section 4.1. This is the performance of a model
that ignores the spurious correlation completely.

4.3 Correlated Noise (CorrNoise)
We modify an existing continuous feature �̃� to create 𝑋 ′ by adding
Gaussian noise that is correlated with both the label and the envi-
ronment. A practical scenario reflecting this setting is one where
sicker patients exhibit more extreme values of a feature in some
environments. We sample 𝜖 ∼ N(_𝑒𝑦, 𝜎2), where _𝑒 is an environ-
ment specific hyperparameter, and 𝑦 ∈ {−1, +1} is the label. We
define𝑋 ′ = �̃� +𝜖 , and use𝑋 ′ in place of �̃� as a feature in our model.
This corresponds to the CorrNoise causal graph in Figure 1.

We set _𝑣𝑎𝑙 = 0.0 and _𝑡𝑒𝑠𝑡 = −1.0, and we fix 𝜎 = 0.5. For
the training environments, we set (_𝑒1, _𝑒2, _𝑒3) as (𝛽 − 𝛿, 𝛽, 𝛽 + 𝛿)
respectively. We vary 𝛽 ∈ {1.0, 2.0} and 𝛿 ∈ {0.1, 0.5}.

Similar to CorrLabel, the goal is to learn a model with low
reliance on 𝑋 ′. However, in this case, we modify an existing infor-
mative feature instead of creating a new feature.

4.4 Subsampling Based on Unobserved Feature
(BiasSampUnobs)

We create an augmented version of the dataset by subsampling
based on a binary feature𝑋 ′ to create confounding. We also remove
this feature from modelling to reflect realistic scenarios of induced
sampling bias due to unknown factors. We configure the desired
data parameters `𝑒1 = 𝑃 (𝑌 = 1|𝑋 ′ = 1) and `𝑒0 = 𝑃 (𝑌 = 1|𝑋 ′ = 0).
We then randomly subsample each environment for each value of𝑋 ′

separately to achieve the desired label distribution. The algorithm
for subsampling is shown in Algorithm 1. The causal graph for this
augmentation is shown in Figure 1. A practical scenario reflecting
this setting is one where the degree of sampling bias differs across
environments.

Algorithm 1: Compute subsampling probability
Data: (𝑥 ′, 𝑦): gender and label of sample
Data: `: desired prevalence of 𝑥 ′ in environment
Data: 𝜏 : current prevalence of 𝑥 ′ in environment
Result: probability that the sample will be dropped

1 if 𝑦 == 1 and 𝜏 > ` then
2 return 1 − 1−𝜏

𝜏 · `
1−`

3 else if 𝑦 == 0 and 𝜏 < ` then
4 return 1 − 𝜏

1−𝜏 · 1−``
5 return 0

Here, the distribution 𝑝 (𝑌 |𝑋 ′) is not invariant across environ-
ments. If the difference between `𝑒1 and `𝑒0 is large, 𝑋 ′ becomes
highly informative, and an ERM model would tend towards a pre-
dictor that outputs the most likely class for each value of 𝑋 ′, i.e.
a classifier that outputs 𝑌 = argmax𝑦 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑌 = 𝑦 |𝑋 ′ = 𝑓 (X)),
where 𝑓 is a model that predicts 𝑋 ′ given features X. Because the
distribution 𝑝𝑡𝑒𝑠𝑡 (𝑌 |𝑋 ′) is vastly different from 𝑝𝑡𝑟𝑎𝑖𝑛 (𝑌 |𝑋 ′), this
confounding-reliant predictor would then have poor OOD perfor-
mance. If 𝑋 ′ is set to be a protected attribute (for example, gender),
depending on the settings of `𝑒1 and `

𝑒
0 , this classifier could also have

large performance disparities between groups. Here, the protected
group would be an example of a hidden stratification [55].
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Several prior connections as elicited in the related work have
been made between domain generalization and potential improved
statistical parity between protected attributes. Therefore, in addi-
tion to overall model performance, we also evaluate the following
metrics related to algorithmic fairness. As these metrics require a
binarized prediction, we choose the threshold that results in the
maximum F1 score for each model.

• Gap in the True Positive Rate (TPR) between the two pro-
tected groups. This corresponds to equality of opportunity
for the positive class [33].

• Gap in the True Negative Rate (TNR) between the two pro-
tected groups. This corresponds to equality of opportunity
for the negative class [33].

• The correlation, evaluated using the Matthews correlation
coefficient [83], between the predicted label and the binary
confounder. This roughly measures how close the learnt
classifier is to a protected attribute predictor, and, in turn,
how robust it is to the distribution shift.

4.5 Subsampling Based on Observed Feature
(BiasSampObs)

We have the identical setup as in Section 4.4. However, we now
include the confounded feature in our model. This allows us to
investigate the model behaviour when it has direct access to the
domain-shifted feature.

5 DATA AND MODELS
We consider clinical data from two distinct data domains – time-
series data and images. We also include results for the Colored
MNIST dataset in Appendix B.

5.1 In-Hospital Mortality (eICU)
Dataset. The eICU collaborative research database V2.0 [62] con-

sists of intensive care unit (ICU) records for over 200, 000 admissions
to over 200 hospitals across the United States. We use the cohort
creation procedure for the in-hospital mortality prediction task out-
lined by Sheikhalishahi et al. [72]. The goal is to predict whether
a patient will die in hospital, given data from the first 48 hours of
their hospital stay. Patients who die within the first 48 hours are
removed from the cohort, as are patients who are younger than 18
or older than 89 years of age. Patients who have more than one ICU
stay only have their first stay selected. Time-series observations
(labs and vitals) are grouped into 1-hour windows, with missing
values imputed from the previous observation.

For each patient, we have 10 continuous and 4 categorical time
series features, and 3 continuous and 2 categorical static features.
A complete list of these features can be found in Table A2. The
resulting dataset consists of 30,680 patients, 11.48% of which have
a positive label. Each patient is associated with a hospital, which is
located in one of four regions in the United States. A small number
of hospitals do not have an associated region in the database. A
summary of the statistics for each region is shown in Table 1.

Domains. We use Midwest, South, and West as training envi-
ronments, and we use Missing as the validation environment. We

choose South as the test environment, as its demographics appear
to be the most distinct of the five, as seen in Table A1.

Models. We use a gated recurrent neural network [20], with a
linear classifier over the final hidden state. Categorical variables
are embedded before being input to the network, and continuous
features are scaled to zero mean and unit variance. Static features
are appended to time-series features at each timestep.

Hyperparameter Search. Weuse ten iterations of random search [12]
to tune the learning rate and hyperparameters specific to each al-
gorithm, randomizing the data splits and model initialization each
time. Following the practice established by Gulrajani and Lopez-
Paz [32], we select the best model of the ten with the associated
model selection strategy (using AUROC as the metric), and then
repeat this entire procedure five times, reporting the mean and
standard deviation of metrics for the best models across the trials.
This allows us to account for the variance in the hyperparameter
search procedure.

Experiments. We benchmark this dataset using all of the exper-
imental settings defined in Section 4. For CorrNoise, we choose
�̃� to be the admission weight (a static continuous feature). For
BiasSampUnobs and BiasSampObs, we use gender as the confound-
ing variable. We set `𝑒

𝑀
and `𝑒

𝐹
to the values shown in Table 2.

5.2 Chest X-rays (CXR)
Dataset. We use four public chest X-ray (CXR) datasets: MIMIC-

CXR [38], CheXpert [37], Chest-Xray8 [80], and PadChest [14].
Statistics for each dataset can be found in Table 1, and detailed
statistics can be found in Table A3. Each sample consists of a chest
X-ray image along with zero or more diagnostic labels.

We preprocess the data to obtain eight common labels shared
between all datasets. Though some datasets contain both frontal
and lateral CXR images, we use only frontal images (both PA and
AP views) for our experiments to prevent presence of additional
confounding in our analysis.

Domains. We designate each dataset as its own environment. We
use the PadChest dataset as the test environment because it is the
only dataset from a hospital located outside of the United States,
and because prior work has shown it to be the domain with the
worst performance as the transfer target [63].

Models. We use a DenseNet-121 [36] network, initializing with
pre-trained weights from ImageNet [24], which has been shown to
perform well on CXR classification [13, 64]. We replace the final
layer with a linear layer of the appropriate size. For training the
network, all images are scaled to 224 × 224 and normalized to the
ImageNet mean and standard deviation. We apply multiple image
augmentations to the training set: flipping of the images along the
horizontal axis, rotation of up to 10 degrees, and a crop of a random
size (75% − 100%) and a random aspect ratio (3/4 to 4/3).

Hyperparameter Search. We use the same hyperparameter search
strategy as described in Section 5.1.

Experiments. We define two predictive setups. In the multitask
setup, we learn a network that jointly predicts the eight labels
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Table 1: Statistics of each region for the eICU in-hospital mortality prediction task and the Chest X-ray classification tasks.
Label distribution for the CXR datasets are shown for the pneumonia prediction task. Detailed dataset statistics can be found
in Appendix A.

In-Hospital Mortality (eICU) Chest X-Rays (CXR)
Environment Midwest West Northeast Missing South MIMIC-CXR CheXpert Chest-Xray8 PadChest
Assigned Split Train Train Train Validation Test Train Train Validation Test
# Samples 10,985 4,527 2,495 1,846 10,827 249,995 191,229 112,120 99,934
% Positive 9.43% 14.42% 13.19% 12.68% 11.74% 7.37% 2.45% 1.28% 4.90%

Table 2: Data parameters for the subsampling experiments
and the resulting gender distribution.

Dataset Environment 𝝁𝑴 𝝁𝑭 % Male % Female
eICU Midwest 0.8 0.05 35.7% 64.3%

West 0.7 0.1 57.6% 42.4%
Northeast 0.6 0.15 51.2% 48.8%
Missing 0.3 0.3 50.3% 49.7%
South 0.1 0.5 82.8% 17.2%

CXR MIMIC-CXR 0.2 0.02 30.2% 69.8%
CheXpert 0.1 0.03 28.6% 71.4%
Chest-Xray8 0.07 0.04 30.8% 69.2%
PadChest 0.05 0.05 54.6% 45.4%

simultaneously, trained to minimize the mean of the binary cross-
entropy over all tasks. For model selection, we use the average
AUROC across all eight labels as the metric. In the binary setup,
we select only the pneumonia label, and learn a binary classifier to
predict whether an image contains a lung infected with pneumonia.
For model selection, we use AUROC as the metric.

We benchmark this dataset for the Base setting using both
the multitask and binary setups, and for the BiasSampUnobs and
BiasSampObs settings using the binary setup. We omit CorrLabel
and CorrNoise here, as these shifts are not clinically meaningful
for x-ray images. For the biased subsampling shifts, we use gender
as the confounding variable. We set `𝑒

𝑀
and `𝑒

𝐹
to the values shown

in Table 2.

6 RESULTS
6.1 Performance on Base Datasets

ERM PeformsWell Across Targets and Shifts. Table 3 shows
the performance of each of the domain generalization methods
on the test environment. First, comparing the performance of the
OracleID and ERM methods, we note that for the CXR setups, there
is indeed a statistically significant drop in performance when a
model is trained on PadChest, versus when a model is transferred
to PadChest.

Surprisingly, the performance of ERM on the eICU test set is
actually on-par with the oracles, indicating that the South environ-
ment is likely not OOD. Therefore, it is not fair to make conclusions
about the performance of domain generalization methods based on
their performance on Base eICU.

In the CXR setting, none of the domain generalization methods
consistently outperform ERM, though CORAL performs quite well

in the binary task, and many of the methods perform significantly
worse than ERM. This result is consistent with prior work [32, 44].

Enforcing Invariance Can Harm Performance. We examine
the methods that have a tunable _ parameter that balances the stan-
dard ERM loss with some invariance enforcing loss. This evaluation
helps to investigate whether domain generalization methods fall-
back to ERM (i.e. small _), and is lacking in prior benchmarks. As
shown in Figure 2, We vary _, and find that, in the case where the
test environment is not OOD, enforcing invariances in the model
can actually significantly hurt test domain performance.

6.2 Performance Under Synthetic Domain Shift
We examine the results of CorrLabel and CorrNoise (Table 4), and
BiasSampUnobs and BiasSampObs (Table 5).

Domain Generalization Shows Limited Effectiveness Under
Extreme SpuriousCorrelations. There are indeed scenarioswhere
domain generalization methods outperform ERM, but improve-
ments are limited, and only become significant when the strength
of the spurious correlation is extreme. In such cases, ERM is com-
pletely reliant on the spurious correlation, and performs worse
than chance on the test environment where the spurious correla-
tion is flipped. This provides the opportunity for a performance
gain for the domain generalization methods. However, even in such
cases, the performance of domain generalization methods is still
quite poor relative to the unaugmented case – which represents the
performance of an ideal ERMmodel that ignores the spurious corre-
lation. We note that although the OracleID model has exceptionally
high performance in the experiments, it is completely reliant on
the spurious correlation in the test environment, and would thus
transfer very poorly.

Validation Environment Model Selection is More Robust.
Next, we observe that, in almost all cases, model selection on the
validation environment yields better performance than using the
training domains. Since we specifically designed the validation
environment to have an intermediate level of spuriousness between
the training and test domains, this result is to be expected.

Increased Training Diversity Improves Generalization. Fi-
nally, for the correlated noise experiment in Table 4, we observe
that increasing the diversity between the environments by increas-
ing 𝛿 significantly increases performance for the large majority of
models. When the gap between the environments increase, it is eas-
ier for the models to detect the spurious correlation, as relying on
the spurious correlation would lead to comparably worse training
loss, resulting in better generalization.
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Table 3: Performance results for Base. We evaluate the AUROC performances on the test environment for the base datasets.
We find that no domain generalization method significantly improves model performance on CXR classification consistently.

Model Selection Dataset OracleID OracleMerged ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

Training
Domains

eICU 0.852±0.009 0.878±0.010 0.879±0.015 0.856±0.012 0.870±0.011 0.873±0.018 0.866±0.014 0.873±0.007 0.870±0.020 0.876±0.013
CXR (multitask) 0.894±0.006 0.900±0.004 0.862±0.007 0.856±0.004 0.857±0.019 0.846±0.006 0.847±0.019 0.794±0.028 0.855±0.010 0.803±0.009
CXR (binary) 0.841±0.022 0.812±0.020 0.718±0.053 0.725±0.048 0.711±0.076 0.719±0.029 0.727±0.026 0.639±0.051 0.756±0.007 0.600±0.035

Validation
Domain

eICU 0.852±0.009 0.878±0.010 0.871±0.020 0.860±0.014 0.851±0.018 0.865±0.008 0.858±0.021 0.862±0.015 0.857±0.024 0.869±0.018
CXR (multitask) 0.894±0.006 0.900±0.004 0.845±0.014 0.860±0.009 0.846±0.011 0.844±0.012 0.838±0.015 0.780±0.015 0.850±0.009 0.805±0.023
CXR (binary) 0.841±0.022 0.812±0.020 0.697±0.046 0.730±0.034 0.693±0.029 0.712±0.034 0.725±0.051 0.643±0.055 0.735±0.017 0.578±0.039

Table 4: Performance results for CorrLabel and CorrNoise.We evaluate theAUROCperformances on the South environment in
eICUmortality prediction with addition of a corrupted version of the label as a feature (CorrLabel) and addition of correlated
Gaussian noise (CorrNoise). We find that model performance improves as the the distance between training environments
increases, and that there exist significant performance gains for domain generalization methods in cases where the spurious
correlation is extreme.

Model Selection Setting OracleID OracleMerged ERM Unaug ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

Training
Domains

CorrLabel (𝛽 = 0.1)
0.963±0.006

0.767±0.021

0.879±0.015

0.305±0.048 0.317±0.022 0.347±0.041 0.349±0.067 0.399±0.026 0.400±0.057 0.359±0.030 0.350±0.051
CorrLabel (𝛽 = 0.3) 0.862±0.011 0.694±0.034 0.660±0.046 0.704±0.031 0.702±0.025 0.688±0.028 0.726±0.028 0.709±0.037 0.687±0.025
CorrLabel (𝛽 = 0.5) 0.911±0.005 0.865±0.012 0.845±0.015 0.862±0.013 0.871±0.018 0.862±0.008 0.869±0.008 0.872±0.010 0.857±0.014
CorrNoise (𝛽 = 1.0, 𝛿 = 0.5)

0.959±0.008

0.794±0.023 0.388±0.047 0.422±0.046 0.386±0.021 0.374±0.031 0.418±0.037 0.404±0.042 0.440±0.050 0.410±0.020
CorrNoise (𝛽 = 1.0, 𝛿 = 1.0) 0.826±0.026 0.556±0.032 0.614±0.080 0.557±0.041 0.571±0.013 0.655±0.030 0.565±0.064 0.600±0.033 0.548±0.014
CorrNoise (𝛽 = 2.0, 𝛿 = 0.5) 0.717±0.022 0.209±0.027 0.214±0.048 0.207±0.020 0.193±0.023 0.191±0.018 0.200±0.026 0.234±0.027 0.199±0.028
CorrNoise (𝛽 = 2.0, 𝛿 = 1.0) 0.730±0.024 0.244±0.025 0.253±0.031 0.254±0.028 0.245±0.025 0.251±0.019 0.263±0.027 0.279±0.033 0.281±0.027

Validation
Domain

CorrLabel (𝛽 = 0.1)
0.963±0.006

0.767±0.021

0.871±0.020

0.678±0.087 0.677±0.065 0.733±0.016 0.612±0.142 0.715±0.045 0.683±0.069 0.689±0.082 0.690±0.056
CorrLabel (𝛽 = 0.3) 0.862±0.011 0.697±0.045 0.724±0.024 0.748±0.032 0.716±0.025 0.684±0.052 0.757±0.035 0.699±0.021 0.717±0.015
CorrLabel (𝛽 = 0.5) 0.911±0.005 0.865±0.013 0.862±0.014 0.868±0.016 0.845±0.023 0.855±0.017 0.865±0.010 0.862±0.007 0.860±0.009
CorrNoise (𝛽 = 1.0, 𝛿 = 0.5)

0.959±0.008

0.794±0.023 0.446±0.139 0.415±0.057 0.463±0.097 0.494±0.085 0.466±0.049 0.596±0.132 0.497±0.101 0.414±0.071
CorrNoise (𝛽 = 1.0, 𝛿 = 1.0) 0.826±0.026 0.561±0.090 0.585±0.057 0.522±0.020 0.566±0.099 0.669±0.062 0.641±0.084 0.591±0.058 0.541±0.053
CorrNoise (𝛽 = 2.0, 𝛿 = 0.5) 0.717±0.022 0.492±0.181 0.489±0.110 0.423±0.181 0.395±0.075 0.385±0.060 0.513±0.087 0.503±0.053 0.467±0.112
CorrNoise (𝛽 = 2.0, 𝛿 = 1.0) 0.730±0.024 0.506±0.149 0.417±0.169 0.436±0.171 0.405±0.110 0.414±0.128 0.546±0.152 0.366±0.111 0.347±0.087

Figure 2: For the Base eICU mortality prediction dataset, we select methods that balance the ERM loss with some invariance
loss term using some hyperparameter _. We vary _ from a small value (where the loss function is equivalent to ERM) to a large
value (where the training environment invariances are strongly enforced). We find that defaulting to ERM yields the best test
environment performance.

6.3 Domain Generalization and Fairness Under
Sampling Bias

DomainGeneralizationDoesNot Produce Fairer Classifiers
with Better Performance. First, we observe from Table 5, similar
to our results on the base datasets in Table 3, that domain general-
ization methods do not show significant improvements in overall
performance over ERM. Next, looking at the TPR gaps in Figure 3
and Table A4, we find that few models have significantly lower
disparity than ERM, and the models that do have much lower over-
all utility. There do not appear to be models that improve on both
overall performance and fairness over ERM. This is also observed

in the TNR gaps (Table A5). Given that a model which ignores
the spurious gender correlation should be both fairer and have
better performance than ERM, we conclude that domain generaliza-
tion methods are not capable of overcoming spurious correlations
induced through subsampling.

Observing Confounding Can Reduce Fairness. Interestingly,
we see that both domain generalization algorithms and ERM pro-
duce classifiers with significantly worse fairness, along with worse
overall performance, when given the value of the subsampled fea-
ture.We observe in Table A6 that the correlation coefficient between
gender and the model prediction is also significantly higher when
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Table 5: Performance results for BiasSampUnobs and BiasSampObs.We evaluate the test environmentAUROC in subsampling ex-
periments with eICU and CXR datasets.We notice that observing the subsampled feature reduces generalization performance,
and that domain generalization methods do not consistently significantly outperform ERM.

Dataset Selection
Method Observed OracleID OracleMerged ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

eICU
Training No 0.886±0.015 0.849±0.020 0.766±0.013 0.776±0.020 0.760±0.021 0.757±0.034 0.750±0.024 0.782±0.026 0.771±0.033 0.756±0.020

Yes 0.896±0.008 0.826±0.024 0.652±0.010 0.657±0.032 0.648±0.044 0.654±0.058 0.657±0.033 0.618±0.071 0.654±0.030 0.656±0.041

Validation No 0.886±0.015 0.849±0.020 0.778±0.034 0.769±0.047 0.769±0.010 0.765±0.022 0.787±0.010 0.746±0.032 0.778±0.032 0.775±0.027
Yes 0.896±0.008 0.826±0.024 0.689±0.023 0.692±0.018 0.690±0.054 0.718±0.033 0.712±0.042 0.608±0.102 0.685±0.021 0.672±0.029

CXR
(Binary)

Training No 0.840±0.010 0.811±0.015 0.640±0.032 0.648±0.049 0.605±0.040 0.640±0.029 0.622±0.035 0.571±0.013 0.653±0.034 0.590±0.085
Yes 0.844±0.006 0.817±0.006 0.669±0.043 0.629±0.023 0.639±0.027 0.626±0.044 0.619±0.045 0.558±0.046 0.631±0.028 0.567±0.044

Validation No 0.840±0.010 0.811±0.015 0.624±0.041 0.632±0.028 0.630±0.013 0.682±0.038 0.640±0.029 0.639±0.048 0.637±0.040 0.611±0.051
Yes 0.844±0.006 0.817±0.006 0.658±0.025 0.655±0.023 0.621±0.073 0.656±0.033 0.650±0.047 0.669±0.038 0.615±0.053 0.640±0.044

Figure 3: TPR gaps for BiasSampUnobs and BiasSampObs on eICU. We evaluate the test environment true positive rate gaps
(M-F) in subsampling experiments with the eICU dataset. We notice that observing the subsampled feature greatly increases
the TPR disparity. Though there exist instances where domain generalization methods have lower disparity than ERM, the
corresponding models also generally have lower AUROC. Corresponding results for CXR are shown in Table A4.

the protected group is given to the model. It appears that the model
becomes more reliant on the spurious correlation when its value is
directly provided, resulting in poor performance and fairness under
distribution shift.

7 DISCUSSION
7.1 Disparity Between Real World and

Manually Confounded Data
We offer several hypothesis for why domain generalization seems
to perform well in limited settings compared with ERM on the
manually augmented data, but performs much worse on real-world
medical imaging data, as well as various real-world benchmarks
from prior work [44].

First, the spurious correlations that we introduce are fairly sim-
ple and extreme in magnitude – there is often one single variable
which the model should avoid in order to achieve a decent result.
In the real world, the spurious correlations that exist are much
more subtle and complex, and it is not as simple to isolate it in the
causal graph as in our scenarios. Secondly, prior work has demon-
strated certain synthetic settings where IRM provably recovers a
suboptimal predictor [40]. The sample complexity of IRM [3] versus
ERM could also be relevant. However, in the real world where the

underlying data generating distribution is unknown, the degree to
which these factors contribute to our observations is unclear.

Finally, prior theoretical work into the diversity requirement for
the environments in IRM has shown that IRM will fail unless the
training environments “cover” the space of all possible environ-
ments [67]. In our synthetic augmentation scenarios, we can easily
tune the data hyperparameters to increase the space covered by
the environments. However, in the real world, where the number
of spurious and invariant features are unknown, it is unclear what
diversity requirement is needed, or how many environments would
be required. Nonetheless such transparent evaluation with added
confounding is critical to expose these limitations.

7.2 Domain Generalization and Fairness Under
Sampling Bias

There are some findings of note in our analysis of fairness in exper-
iments with subsampling. We observe that including the protected
group as a feature in the classifier leads to worse performance,
more unfair predictions, and greater correlation between model
prediction and the gender attribute for both ERM and domain gen-
eralization methods. This is consistent with prior findings which
show that the inclusion of spurious correlations can have significant
effects on accuracy and group fairness [43].
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Our results demonstrate that domain generalization methods do
not provide improved performance along with improved fairness
guarantees over ERM in sampling bias experiments, both in cases
with awareness of the sensitive attribute and without knowledge of
the protected feature. We do note there exist models which trade-off
model performance for increased fairness. This trade-off has also
been observed in the supervised learning setting [51]. However, as
a random binary classifier is perfectly fair, the real-world utility of
these models should be determined on a case-by-case basis.

Our results appear inconsistent with prior work in that Creager
et al. [23] prove a direct relationship between group sufficiency and
IRM objective. However, Creager et al. [23] demonstrate this theo-
retical result in the setting where the sensitive attribute is taken to
be the environment label. Adragna et al. [1] show empirically that
IRM can overcome the fairness impairment faced by ERM when a
spurious correlation is introduced between the label and certain
demographic groups through label flipping. Both differ from our
experimental setup which studies the fairness of domain general-
ization and ERM in the context of sampling bias – where groups
have varying label distributions across different environments.

In this work, we study fairness provided by domain generaliza-
tion methods on healthcare datasets according to common fairness
metrics in machine learning such as equalized odds, we emphasize
that such fairness criteria may not be relevant nor particularly use-
ful in healthcare datasets where class often denotes diagnosis. For
this reason, we suggest for future work that domain generalization
in the clinical sector be evaluated according to other ethical and
fairness criteria more suited to healthcare.

7.3 Best Practices for Domain Generalization
in Medicine

From our evaluation of domain generalization using limited but pub-
licly available healthcare datasets, we provide the following broad
insights for applying domain generalization in medicine. First, very
few existing benchmarks compare benefits of domain generaliza-
tion methods to the oracle baseline, where test set data is observed.
Though this baseline is impractical from a domain generalization
perspective, in reality, a hospital could easily choose to train and
deploy a model only on their data, instead of transferring from pub-
licly available datasets. We find that, though this model would learn
spurious correlations that exist within that hospital, this approach
outperforms domain generalization in almost all cases.

It is also important to consider the test environments for which
the model will be deployed. In the domain generalization setup,
there is no prior knowledge about how the test environments will
look like during training time. However, this is not always the case
in the real world. If there is a guarantee that the model trained will
only be deployed at large hospitals only in the US, and temporal
domain shift is not a factor, a simple ERM model could perform
quite well, while relying on spurious correlations consistent across
the US environments. In fact, in such cases, the test environment
might not even be OOD, as in the base eICU example. This is more
likely to be true when the majority of observed features (such as
vitals or lab tests) tend to be invariant across demographics. In this
scenario, careless application of domain generalization methods

(with improper hyperparmeter tuning) could actually lead to worse
model performance compared to ERM.

If, instead, the model created has the potential to be deployed in
all regions throughout the world, it is then critical to learn a model
that does not rely on US-specific spurious correlations. Domain
generalization could potentially be useful in this case, where an
invariant model is learnt in exchange for worse performance at
sites in the US. In such cases, it is important to train on a set of en-
vironments that is as diverse as possible. This further suggests that
without real diversity in training environments, learning models
that are truly invariant to such spurious correlations is not possible
with existing methods. It is also highly beneficial to conduct model
selection using an environment, or a combination of environments,
closest to where the model will be deployed.

In the field of medicine specifically, there already exist many
known causal effects between various observed features [28, 54].
Working with domain experts to delve into existing causal rela-
tionships in tabular data can provide invaluable insight both for
constructing and benchmarking invariant models.

Finally, when considering the performance of a domain gener-
alization method, it is important to look past its performance on
Colored MNIST, as state-of-the-art performance in these datasets
appears to have little correlation with performance on real-world
data, likely due to their model selection using the test environ-
ment (see Appendix B). Instead, it is important to consider their
performance on a large variety of realistic benchmarks such as
DomainBed [32], WILDS [44], or our clinical framework.

8 CONCLUSION
Clinical models trained on one hospital or region typically degrade
in performance in the presence of domain shift [5, 21, 50, 63, 73, 74,
77, 84]. In this paper, we evaluated the performance of eight domain
generalization methods on their ability to generalize to an unseen
test environment for typical clinical datasets. We find, consistent
with prior work on general image datasets [32], that these methods
do not consistently exhibit significantly improved performance on
chest X-ray datasets over empirical risk minimization. We then
propose a framework for manually introducing realistic spurious
correlations to the dataset, and find that there exist cases where
domain generalization significantly outperforms empirical risk min-
imization. We observe no consistent improvement in fairness along
with performance in the presence of sampling bias.

We believe that the results we have shown motivates the need
for further testing of the failure and success modes of domain
generalization in clinical settings, as well as theoretical justifications
for the disparity between their performance on artificial shifts
versus real-world shifts. We reiterate the message by Gulrajani
and Lopez-Paz [32] that the model selection strategy is an integral
part of a domain generalization method, and echo the sentiment
by Koh et al. [44] for more realistic benchmarks for evaluating
real-world domain shifts. We believe that our empirical framework
that introduces synthetic domain shifts and sampling bias will
prove to be useful starting step for stress-testing novel domain
generalization methods, as well as inspire further work in domain
generalization in medicine.
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Appendix A DATASET STATISTICS

Table A1: Statistics for each region for the eICU in-hospital mortality prediction task

Region Midwest West Northeast Missing South
Assigned Split Train Train Train Validation Test
# Patients 10,985 4,527 2,495 1,846 10,827
% Positive 9.43% 14.42% 13.19% 12.68% 11.74%
# Unique Hospitals 69 41 13 25 52
Mean Age 63.4 64.0 63.9 65.3 63.8
Male 54.55% 55.75% 54.07% 55.58% 54.12%
Female 45.45% 44.25% 45.93% 44.42% 45.88%
African American 8.33% 2.64% 2.40% 5.99% 20.80%
Asian 1.01% 3.70% 0.52% 4.23% 1.18%
Caucasian 83.68% 78.43% 92.34% 73.68% 69.43%
Hispanic 1.36% 6.21% 0.80% 8.90% 4.72%
Native American 0.52% 1.04% 0.12% 0.49% 0.33%
Other/Unknown 5.10% 7.98% 3.81% 6.70% 3.54%

Table A2: Features used for the eICU mortality prediction task.

Time-Series Static
Continuous Categorical Continuous Categorical
Heart Rate GCS Total Admission Height Admission Diagnosis
MAP Eyes Admission Weight Gender
Invasive BP Diastolic Motor Age
Invasive BP Systolic Verbal
O2 Saturation
Respiratory Rate
Temperature
glucose
FiO2
pH
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Table A3: Summary statistics for the four chest X-ray datasets. Note that we use only frontal images for our experiments.
Demographics are shown for patients in the whole dataset, while label distributions shown are only for frontal images.

MIMIC-CXR CheXpert Chest-Xray8 PadChest
Assigned Split Train Train Validation Test

Location Boston Stanford Bethesda Alicante
(Spain)

# Images 371,858 223,648 112,120 144,639
# Patients 65,079 64,740 30,805 64,874
# Frontal 249,995 191,229 112,120 99,934
# Lateral 121,863 32,419 0 44,705
Male 52.17% 59.36% 56.49% 49.58%
Female 47.83% 40.64% 43.51% 50.41%
0-20 2.20% 0.87% 6.09% 4.06%
20-40 19.51% 13.18% 25.96% 8.82%
40-60 37.20% 31.00% 43.83% 26.54%
60-80 34.12% 38.94% 23.11% 37.95%
80- 6.97% 16.01% 1.01% 22.64%
No Finding 33.33% 8.89% 53.84% 36.19%
Atelectasis 19.98% 15.58% 10.31% 5.49%
Cardiomegaly 19.70% 12.26% 2.48% 9.08%
Effusion 23.64% 40.25% 11.88% 6.01%
Pneumonia 7.37% 2.45% 1.28% 4.90%
Pneumothorax 4.67% 9.26% 4.73% 0.35%
Consolidation 4.73% 6.81% 4.16% 1.56%
Edema 11.82% 26.00% 2.05% 1.20%

Appendix B COLORED MNIST
B.1 Data Generation Process
Inspired by the work of Choe et al. [19] to vary data generation parameters in Colored MNIST, we introduce the following Colored MNIST
data generation process with three adjustable parameters.

(1) Randomly split the MNIST data into 2 training environments (𝑒1, 𝑒2, each with𝑛 = 25, 000), and one test environment (𝑒𝑡𝑒𝑠𝑡 ,𝑛 = 10, 000).
(2) Generate a binary label 𝑦𝑜𝑏𝑠 from the MNIST label 𝑦𝑛𝑢𝑚 by assigning 𝑦𝑜𝑏𝑠 = 0 if 𝑦𝑛𝑢𝑚 ∈ {0, 1, ..., 4} and 𝑦𝑜𝑏𝑠 = 1 otherwise.
(3) Flip 𝑦𝑜𝑏𝑠 with probability [ to obtain 𝑦.
(4) Define 𝑥𝑐ℎ = 𝑦. Flip 𝑥𝑐ℎ to obtain 𝑥𝑐ℎ with probability 𝑝1, 𝑝2, and 𝑝𝑡𝑒𝑠𝑡 = 0.9 for 𝑒1, 𝑒2 and 𝑒𝑡𝑒𝑠𝑡 respectively. Here 𝑝1 = 𝛽 + 𝛿/2,

𝑝2 = 𝛽 − 𝛿/2.
(5) Construct 𝑋 as [𝑋𝑓 𝑖𝑔 · (1 − 𝑥𝑐ℎ), 𝑋𝑓 𝑖𝑔 · 𝑥𝑐ℎ].

The three parameters that we vary are the following:
• [: the label corruption probability. Corresponds to 1 - strength of the invariant correlation. Baseline value of 0.25.
• 𝛽 : Average color flip probability between the two training environments. Corresponds to 1 - strength of the spurious correlation.
Baseline value of 0.15.

• 𝛿 : Gap between two training environments. Baseline value of 0.1.

B.2 Experiments
We vary each data generation parameter independently while keeping the others at their baseline values (which correspond to their settings
in standard Colored MNIST). To model the data, we flatten the image and use a dense MLP with ReLU activations, consistent with prior
work [6]. For each data generation setting and for each model, we use 20 iterations of random search over model hyperparameters (number
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of layers, number of units, dropout probability), algorithm hyperparameters (such as the penalty coefficient and the number of annealing
iterations), and optimization hyperparameters (batch size and learning rate).

For early stopping and model selection, we experiment with using model accuracy for the following two schemes:
• Training Domains: We use the pooled validation sets from the two training environments.
• Test Domain: We use a validation split from the test environment. This is the only model selection scheme used in the prior work for
most domain generalization methods [2, 6, 45, 46, 82]. Note that as there are only three environments, we do not allocate a validation
environment for Colored MNIST.

B.3 Results
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Figure A1: Test environment accuracy of various domain generalization methods on the Colored MNIST dataset.

First, we observe from Figure A1 that when the training domain is used for model selection, no method performs significantly better
than ERM. The performance gains for domain generalization methods only appear when model selection is done directly on the test set.
This is consistent with prior findings [32]. Though this is the setup used in the large majority of papers proposing domain generalization
methods [2, 6, 45, 46, 82], having test environment data for model selection is not realistic, and defeats much of the purpose of domain
generalization. This is also a potential explanation for why domain generalization methods, which work well on Colored MNIST in the
literature, do not work well in our clinical experiments (which do not use the test domain for model selection).

We also observe many intuitive correlations between the data generation parameters and the test environment accuracy. Increasing [, the
data corruption probability, tends to decrease model performance, consistent with prior work [19]. There is a pronounced increase in model
performance as the training environment characteristics (𝛽) move closer to the test environment (0.9). There is a limited increase in model
performance with increasing environment diversity. Surprisingly, some models are able to achieve better performance than ERM even when
the two training environments originate from the same distribution. We attribute this to the use of early stopping based on the validation
metric in our experiments, as well as the variance in samples from minibatches drawn between the training environments.

Finally, we note the shift in reliance on the spurious versus invariant correlations that occur as we change certain data generation
parameters. This is most pronounced when the training domains are used for model selection. For example, as we increase [ above 0.15, the
spurious correlation becomes stronger than the invariant correlation, and there is a marked drop in accuracy. Similarly, as we increase 𝛽
above 0.25, the spurious correlation becomes weaker than the invariant correlation, and there is a decided increase in test domain accuracy.
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Appendix C ADDITIONAL RESULTS FOR SUBSAMPLING SHIFTS

Table A4: TPR gaps for BiasSampUnobs and BiasSampObs. We evaluate the test environment true positive rate gaps (M-F) in
subsampling experiments with eICU and CXR datasets. We notice that observing the subsampled feature greatly increases
the TPR disparity. Though there exist instances where domain generalization methods have lower disparity than ERM, the
corresponding models also have lower AUROC.

Dataset Selection
Method Observed OracleID OracleMerged ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

eICU
Training No -0.179±0.041 0.110±0.065 0.249±0.046 0.254±0.072 0.303±0.093 0.277±0.038 0.318±0.040 0.210±0.090 0.323±0.043 0.320±0.041

Yes -0.369±0.044 0.196±0.095 0.530±0.046 0.538±0.066 0.581±0.066 0.534±0.068 0.504±0.027 0.503±0.068 0.556±0.038 0.523±0.070

Validation No -0.179±0.041 0.110±0.065 0.188±0.071 0.300±0.088 0.184±0.095 0.235±0.124 0.253±0.069 0.094±0.109 0.278±0.057 0.174±0.075
Yes -0.369±0.044 0.196±0.095 0.526±0.066 0.453±0.035 0.441±0.093 0.399±0.133 0.362±0.177 0.361±0.213 0.462±0.108 0.482±0.062

CXR
(Binary)

Training No 0.022±0.039 0.173±0.092 0.310±0.036 0.292±0.035 0.287±0.050 0.276±0.045 0.250±0.058 0.319±0.055 0.342±0.074 0.158±0.121
Yes 0.036±0.072 0.135±0.029 0.365±0.058 0.328±0.114 0.354±0.083 0.338±0.118 0.253±0.150 0.505±0.183 0.339±0.067 0.221±0.116

Validation No 0.022±0.039 0.173±0.092 0.267±0.041 0.315±0.071 0.281±0.037 0.308±0.058 0.304±0.064 0.296±0.098 0.308±0.063 0.152±0.122
Yes 0.036±0.072 0.135±0.029 0.311±0.023 0.281±0.048 0.236±0.081 0.346±0.062 0.291±0.061 0.255±0.109 0.291±0.056 0.208±0.095

Table A5: TNR gaps for BiasSampUnobs and BiasSampObs. We evaluate the test environment true negative rate gaps (M-F) in
subsampling experiments with eICU and Chest X-ray (CXR) datasets.

Dataset Selection
Method Observed OracleID OracleMerged ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

eICU
Training No 0.081±0.050 -0.033±0.015 -0.100±0.031 -0.103±0.036 -0.107±0.034 -0.103±0.034 -0.100±0.026 -0.077±0.061 -0.119±0.017 -0.136±0.060

Yes 0.319±0.109 -0.064±0.024 -0.136±0.035 -0.200±0.052 -0.196±0.069 -0.133±0.048 -0.157±0.041 -0.128±0.030 -0.159±0.042 -0.149±0.039

Validation No 0.081±0.050 -0.033±0.015 -0.120±0.029 -0.093±0.024 -0.090±0.051 -0.114±0.072 -0.098±0.019 -0.100±0.063 -0.099±0.058 -0.100±0.041
Yes 0.319±0.109 -0.064±0.024 -0.171±0.042 -0.149±0.078 -0.102±0.025 -0.153±0.079 -0.118±0.065 -0.107±0.065 -0.162±0.102 -0.183±0.057

CXR
(Binary)

Training No -0.016±0.005 -0.059±0.024 -0.135±0.035 -0.129±0.017 -0.146±0.031 -0.117±0.039 -0.135±0.054 -0.446±0.096 -0.117±0.035 -0.157±0.137
Yes -0.016±0.006 -0.049±0.016 -0.168±0.050 -0.156±0.060 -0.137±0.070 -0.134±0.064 -0.126±0.081 -0.576±0.269 -0.154±0.074 -0.269±0.167

Validation No -0.016±0.005 -0.059±0.024 -0.156±0.064 -0.149±0.025 -0.153±0.046 -0.143±0.061 -0.176±0.028 -0.258±0.126 -0.121±0.029 -0.144±0.173
Yes -0.016±0.006 -0.049±0.016 -0.141±0.042 -0.170±0.043 -0.128±0.094 -0.169±0.042 -0.147±0.076 -0.140±0.090 -0.123±0.032 -0.192±0.144

Table A6: Matthews correlation coefficient between the gender attribute and the predicted label for the subsampling augmen-
tation on the test environment. A positive value indicates correlation between males and positive predictions (and between
females and negative predictions), and a negative value indicates correlation between males and negative predictions (and
females and positive predictions).

Dataset Selection
Method Observed OracleID OracleMerged ERM GroupDRO IRM VREx RVP IGA CORAL MLDG

eICU
Training No -0.314±0.025 -0.161±0.033 -0.023±0.020 -0.023±0.033 -0.008±0.042 -0.017±0.021 0.007±0.027 -0.037±0.033 -0.003±0.029 0.017±0.038

Yes -0.496±0.046 -0.091±0.043 0.104±0.023 0.126±0.037 0.138±0.057 0.109±0.036 0.103±0.013 0.107±0.035 0.127±0.023 0.103±0.022

Validation No -0.314±0.025 -0.161±0.033 -0.044±0.028 -0.014±0.030 -0.054±0.021 -0.034±0.068 -0.026±0.033 -0.054±0.060 -0.034±0.046 -0.067±0.056
Yes -0.496±0.046 -0.091±0.043 0.108±0.027 0.084±0.026 0.050±0.040 0.068±0.076 0.029±0.094 0.061±0.039 0.073±0.062 0.102±0.031

CXR
(Binary)

Training No 0.031±0.012 0.108±0.040 0.246±0.035 0.241±0.017 0.260±0.028 0.232±0.033 0.244±0.055 0.444±0.092 0.236±0.039 0.216±0.125
Yes 0.032±0.010 0.094±0.016 0.281±0.046 0.274±0.055 0.251±0.066 0.251±0.062 0.217±0.128 0.612±0.236 0.273±0.070 0.328±0.114

Validation No 0.031±0.012 0.108±0.040 0.255±0.050 0.259±0.019 0.260±0.033 0.231±0.072 0.274±0.030 0.294±0.106 0.233±0.037 0.177±0.156
Yes 0.032±0.010 0.094±0.016 0.245±0.036 0.266±0.038 0.219±0.104 0.277±0.035 0.245±0.058 0.200±0.091 0.234±0.023 0.240±0.121
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