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Abstract

Assessing the effects of a policy based on observational data from a different policy is a common problem
across several high-stake decision-making domains, and several off-policy evaluation (OPE) techniques
have been proposed for this purpose. However, these methods largely formulate OPE as a problem
disassociated from the process used to generate the data (i.e. structural assumptions in the form of a
causal graph). We argue that explicitly highlighting this association has important implications on our
understanding of the fundamental limits of OPE. First, this implies that current formulation of OPE
corresponds to a narrow set of tasks, i.e. a specific causal estimand which is focused on prospective
evaluation of policies over populations or sub-populations. Second, we demonstrate how this association
motivates natural desiderata to consider a more general set of causal estimands, particularly extending
the role of OPE for counterfactual or retrospective off-policy evaluation at the level of individual units
(e.g. patient-level) of the population. Further, a precise description of the causal estimand highlights
which OPE estimands are identifiable from observational data under stated generative assumptions. For
those OPE estimands that are not identifiable from observational data, the causal perspective further
highlights where additional experimental data is necessary for identification, and thus naturally highlights
situations where human expertise can aid identification and estimation. Furthermore, many formalisms of
OPE overlook the role of uncertainty entirely in the estimation process.We demonstrate how specifically
characterising the causal estimand highlights the different sources of uncertainty. The role of human
expertise then naturally follows through in terms of managing the induced uncertainty. We discuss each
of these aspects as actionable desiderata for future OPE research at scale and in-line with practical utility.

1 Introduction
In many real-world applications such as marketing [Silver et al., 2013], healthcare [Liao et al., 2019, Prasad
et al., 2019, Parbhoo et al., 2017, 2018, Gottesman et al., 2019] and education [Mandel et al., 2014], it is
common to reason about the effects of deploying one policy, based on data collected from a different policy.
For instance, in healthcare, given the treatment history of a patient in ICU, we might be concerned about
whether patient outcomes would improve if we changed the treatment protocol. Such problems have been
posed as off-policy evaluation (OPE) tasks in reinforcement learning, and several methods have been proposed
for performing OPE estimation.

Conventionally, OPE focuses on estimating the population and sub-population-level prospective performance
of an evaluation policy based on data collected from a different behavior policy [Precup, 2000a, Sutton and
Barto, 2018]. Evaluating prospective performance on (sub)-populations is akin to answering the question
“Will new patients have better outcomes if treated with A instead of B?”. Yet in practice, we are also interested
in questions of the form “If we had acted differently, would patient X’s condition have improved?”. The
two key distinctions are that these are inherently require reasoning about retrospective performance of an
evaluation policy as well as require reasoning on an individual level [Heckman and Vytlacil, 2001, Richens
et al., 2019, Valeri et al., 2016]. For prospective reasoning specifically at population and sub-population
levels, there is a vast literature in identifying population and sub-population off-policy estimates, including
characterizing their statistical properties [Dai et al., 2020, Precup, 2000b, Jiang and Li, 2016, Thomas and
Brunskill, 2016, Levine et al., 2020]. Formalizing the latter (i.e. individual level, retrospective analysis)
requires counterfactual reasoning. We argue that there is a need to broaden the traditional purview of OPE
to include and enable individual-level reasoning, and formally, counterfactual analysis. We posit that i) this
perspective is critical to understanding the limits of current ML-based modeling approaches for OPE, and ii)
allows to generalize OPE to answer novel objectives of practical interest.

We argue that the unifying framework for OPE is to associate the OPE objective to the data-generating
mechanism, more specifically, one endowed with an underlying Structural Causal Model (SCM). Using this
framework, we can formalize OPE objectives as different causal estimands tied to appropriate assumptions
over the structure and functional relationships in the associated SCM. Besides this unifying framework, there
are several significant implications. First, whether and how well these causal quantities can be estimated from
observational data (collected from a different policy) now reduces to figuring out whether the causal estimand
is observationally identifiable (i.e., whether we can estimate it from observational data) given our structural
assumptions. If identifiable, these necessary assumptions open the possibility of further understanding
estimation properties (from a finite number of observational samples). This view also helps formalize OPE if
an OPE estimate is non-identifiable from observational data. Specifically, non-identifiability can highlight the
need for physical experiments or additional assumptions that could aid identification. Finally, formalizing the
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causal estimand can help determine the nature of domain expertise required to achieve multiple objectives of
identification, estimation, and validating OPE estimates, which can critically improve the practical utility of
OPE.

In this position paper, we discuss the need to formalize OPE through a causal lens to advance and generalize
OPE to make it a useful tool for practice. Our objective is to use the causal perspective to chart a roadmap for
generalizing OPE, in particular to expand and address individual level, sub-population level value estimates not
just for prospective utility but also for retrospective reasoning in sequential decision-making settings. We first
cover background focusing on a fundamental sequential decision-making setting of Markov Decision Process
and Structural Causal Models in Section 2. We then show how the conventional view of OPE can be limiting
and demonstrate how OPE tasks are formalised as causal estimands in Section 3. In Section 4, we discuss
how outlining the appropriate causal estimand helps identify different sources of uncertainty, tied directly to
i) identifiability of the OPE estimand from observational and/or experimental data, ii) make explicit the
modeling assumptions and potential domain expertise required to estimate/ improve statistical properties of
intermediate quantities of the OPE estimand. In doing so, we subsequently highlight that this characterization
naturally formalizes the role of humans in generalizing OPE in Section 5. Specifically, we argue that human
feedback may be necessary in terms of i) providing additional knowledge of the data-generating processes,
including highlighting limits of where physical experimentation is possible, ii) explicitly conducting physical
experiments to aid identifiability, iii) providing input that can improve statistical properties of OPE estimates
in identifiable cases, or iv) providing domain knowledge about potential violations in the knowledge of the
data-generating process, such as the amount of potential confounding, thereby enabling validation of OPE
estimates. When assumptions about the underlying data-generating mechanisms are unclear or need to be
relaxed, we argue that this organically generates a desiderata for developing methods that can help overcome
various issues in OPE. We conclude by providing specific suggestions in the form of a roadmap for using
OPE in practice in Section 6.

2 Background and Notation
We begin by describing the notion of a Markov Decision Process (MDP) and its role in traditional off-policy
evaluation. We subsequently show how augmenting the MDP with an SCM allows us to view different OPE
objectives as causal estimands tied to data-generating mechanism of the MDP. We use the SCM formulation
to formalize various estimands for OPE and discuss implications outlined above in subsequent sections. We
use capital letters to denote random variables X and small letters to denote their realizations. Domain of a
given random variable X is denoted by ΩX . A collection of random variables is denoted by bold-faced caps
letters X.

Markov Decision-Process (MDP) [Bellman, 1957]. A canonical Data-Generating Process (DGP)
assumed for OPE in reinforcement learning settings is the Markov Decision Process (MDP). MDP (finite or
infinite horizon) is defined by the tuple (ΩS ,ΩA,P,R, p0, γ) where ΩS indicates the state-space, ΩA indicates
the action-space, P denotes the transition dynamics, i.e. P : ΩS × ΩA × ΩS→ [0, 1]. The reward is denoted
here by Y ∈ ΩY . The reward function governing the MDP is denoted by R : ΩS × ΩA→ΩY , p0 the initial
state distribution and the discount factor γ. A policy provides a distribution over action given state i.e.
functionally, π : S ×A→ [0, 1]. Let HπT , {S0, A1, Y1, · · · , St−1, At, Yt, · · · , ST−1, AT , YT } be the trajectories
collected under policy π and HπT is the collection of trajectories up to time T . Let G(HπT ) =

∑T
t=0 γ

tYt. A
behavior policy is denoted with the subscript πb and the evaluation policy is denoted by πe. Figure 1(a)
denotes the basic graphical model describing an MDP.

Next we cover background on Structural Causal Models (SCMs) and describe the SCM-augmented MDP
that will subsequently be used to generalize OPE.

Structural Causal Models (SCM) [Pearl, 2009]. A structural causal modelM describes the causal
mechanisms driving a system. It consists of a tuple 〈U,V,F,P〉. Here V are the internal or endogenous
variables in the causal system and U are the set of independent external or exogenous random variables that
determine factors of variation in the system; The set of functions F govern the causal relationship between a
variable X ∈ V and its causal parents PaX with the independent exogenous variation due to all exogenous
variables UX ⊆ U affecting X, given by X := fX(PaX , UX). The causal dependencies can be summarized
in a Directed Acyclic Graph (DAG) G with V as the nodes and directed edges determined by the SCM.
Exogenous nodes are unobserved. Any unobserved nodes between X and Z such that UX ∩ UZ 6= ∅, induce
dependence or confounding and are usually represented by a bidirectional edge between X and Z. The
framework attributes probabilistic (Semi)-Markov assumptions to the joint distribution P over the nodes in
the graph. This characterizes a probability distribution implying that we can observe samples corresponding
to endogenous variables V true to the underlying causal graph and mechanism.

The formulation of structural causal models using the functional relationships and the endowed (Semi)-Markov
distribution, allows us to define an intervention in the causal system. An atomic/hard intervention on a node
anchors its value to a specific realization (e.g. assigning a treatment to a specific patient), thus removing the
causal dependence on the node’s parents and any stochasticity due to exogeneous variables. This is denoted as
do(X = x) for the node X and replaces the functional assignment fX(PAX , UX) with X := x. The induced
distribution is known as an interventional distribution, denoted by p(V|do(X = x)). The effect of this is that
for all realisations inconsistent with X = x, the probability is 0. This allows for the reasoning: what would be
the effect on V \X if X is x, or practically, what would be the patient outcome if we only gave them an oral
medicine. Note that interventions only affect descendant nodes. In OPE, we are often interested in identifying
not just the effect of such a hard intervention, but of an alternative stochastic/deterministic policy, such
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Figure 1: MDP and MDP augmented with an SCM. (a): MDP with States St, Actions At and Out-
comes/rewards Yt sampled using behavior policy πb. (b): SCM augmented MDP. Gray nodes here are
exogenous latents that control the stochasticity of the corresponding node. Pink edges correspond to the
behavior policy distribution. Green edges determine the transition dynamics in both figures.

as giving pills at a slightly lower frequency. These are known as soft interventions and result in modifying
the functional assignment fX with an alternative governing mechanism gX , i.e. X := gX(PaX , UX). A soft
intervention is denoted by σ(gX). In this paper, we focus on both soft and hard interventions for a complete
exposition.

Definition 1. Soft Interventional Distribution: An intervention σ(gX) on a node X in an SCMM consists
of replacing the governing mechanism of X given by the function fX(PaX , UX) with a different governing
causal mechanism gX(PaX , UX) where PaX are the parents of X in a new DAG Gg.

An example of a soft intervention g is to evaluate for example, “what is the effect of treating a patient with
pills over shots depending on symptoms?”. Here the mechanism that recommends shots f is replaced by one
recommending pills stochastically as a function of patient symptoms. This evaluation is indeed prospective.
However, certain questions cannot be answered from such reasoning alone. Specifically, causal queries such as
“would the patient’s outcome be different if instead they were only provided with medications rather than an
invasive procedure?”, are counterfactual in nature. Counterfactual reasoning can be done for both soft and
hard interventions, but requires inferring a model of the exogenous variables P (U|V = v), that informs us of
the likely stochasticity under the observational data. This can then be followed by an intervention with g on
a causal system with exogenous noise priors p(U) replaced by p(U|V = v) (and is usually referred to as the
abduction-step). Counterfactuals can therefore be used for retrospective reasoning in OPE.

Definition 2. Counterfactual Distribution: Let Mv correspond to the SCM where the exogenous noise
model p(U) in M is replaced by p(U|V = v). Intervening with g on the resulting SCM induces the joint
counterfactual distribution PMσ(g)|v . The corresponding counterfactual random variable(s) are denoted by
Y
σ(g)
t (U) where U indicates sampled units that are the target of counterfactual analysis. When clear from

context we drop the σ(·) notation and refer to the variable as Y gt (U).

We can augment the MDP (Figure 1(a)) with an SCM to describe the underlying causal mechanisms governing
the sequential decision-making system. The SCM analogue of an MDP can thus be re-stated formally and
is denoted in Figure 1(b). State S0 is a node without parents, and p0 determines the stochasticity of
S0. The corresponding exogenous latent US0 is such that p(US0) = p0, and S0 = US0 is the nominal
functional relationship in the corresponding SCM. The policy πb governs the relationship between actions
At and its causal parent St for all time-steps. That is, At = fAt(St, UAt)is governed by π(At|St) where the
parameterization of f and dependence on UAt is determined by the distribution πb. For example, if At is
normally distributed with mean St, and variance σ2

At
i.e. π(At|St) , N (St, σ

2
At

), then a potential functional
relation in the corresponding SCM is: At = fAt(St, UAt) = St + UAt where UAt ∼ N (0, σ2

At
). Similarly the

transition dynamics P governs the functional relationship St+1 = fSt+1
(St, At, USt+1) implicitly. Note that f

characterizes the deterministic component and all stochasticity is governed by exogenous USt. Similarly for
the reward function, i.e. R governs the functional relationship Yt = fYt(St, At, UY t). This perspective leads
to an updated interpretation of the canonical OPE as a specific causal estimand in an MDP. An example of
a soft intervention corresponding to an OPE task is the need to evaluate how an evaluation policy would
perform by changing the mechanism governing At i.e. fAt , determined by πb to an alternative function
corresponding to the evaluation policy πe). We formalize this in the next section.

3 Formalizing OPE as a causal estimand using SCMs
OPE is usually defined in the RL literature as that of estimating the cumulative reward of an evaluation
policy πe given observational trajectories from a different behavior policy πb. More formally OPE is defined
in Definition 3.

Definition 3. Off-Policy Evaluation (OPE) [Precup, 2000a]: Off-policy evaluation estimates the performance
Eπe [G(HπeT )|HπbT ] of πe based on a data set of trajectories HπbT , {S0, A1, Y1, · · · , St, At, Yt, · · · , ST−1, AT , YT }
each independently generated by different policy(ies) πb.

Definition 3 therefore is focused on i) expected reward from deploying πe, and ii) implicitly focused on
prospective performance of the policy (i.e. on new samples sampled from the data-generating mechanism
that deploys πe. This is made explicit by augmenting the MDP with an SCM. In the SCM framework, the
canonical OPE objective in Definition 3 corresponds to a soft intervention of the form in Figure 2 (shown here
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Figure 2: Example of an OPE task as a soft intervention in an MDP where the behavior policy πb is replaced
with evaluation policy πe.
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Figure 3: Formalizing OPE through a causal lens along two main axes: i) Estimand type and ii) Counterfactual
vs Interventional OPE. Green shades indicate OPE tasks commonly considered in OPE reinforcement learning
literature. Yellow shades indicate our proposed generalization by viewing OPE as a causal estimand. Each
block contains an example task we might want to accomplish in OPE. Description of the appropriate causal
estimand is provided in Section 3.

for the standard MDP case). This canonical definition corresponds to the causal estimand E[G(HπeT )|HπbT ] or
when interested in the final outcome, just E[Y πeT |H

πb
T ].

Prospective OPE and interventional estimation. To make decisions about the utility of a policy at an
individual level, we are not only interested in expected outcomes but on the probability distribution of the
outcome of interest. For example, we may want to answer: “Will new patients improve if we changed the
medication?”. The corresponding causal estimand is p(Y πeT |H

πb
t ) deviating from the canonical OPE estimand.

Subgroup-level OPE estimation further demands conditional expectations based on specific attributes of
interest: “Will female patients improve if we changed the medication?” and corresponds to the causal estimand
E[Y πeT |H

πb
T , S:,j = female] where j indexes a specific attribute in the state representation vector (and is

usually invariant over time hence not indexed by t. A more significant distinction which is excluded from
the purview of OPE is whether one is interested in retrospective OPE i.e. answering whether for example
“Would this patient have survived had we changed the medication?” This distinction is made clear in the SCM
augmented MDP and the intuition of what it means to conduct such counterfactual reasoning.

First, any OPE task, requires a soft intervention for either retrospective or prospective analysis i.e. a using
policy πe instead of πb, thus changing the mapping St→At (denoted in Figure 2). To sample actions, we
this sample exogenous variables UAt’s according to the new policy mapping in either the retrospective or
prospective OPE task. The main distinction is in the choice of units leveraged for inference over patient
transitions and outcomes. Since the goal of interventional or prospective OPE tasks is to evaluate utility of a
policy on new units or subpopulations post-soft-intervention, this inference is conducted on units re-sampled
from the prior indicating prospective units. The OPE task can be individual-level, sub-population-level
or population-level and can be estimated with appropriate conditioning post re-sampling. We make these
distinctions clear in Figure 4. A unit corresponds to a sample associated with the MDP-SCM. The queries
associated with this task are summarized in the bottom row of Figure 3. For individual level prospective
OPE, we focus on the P (Y πeT |H

πb
T ), i.e. the prospective outcome after intervening with πe using data collected

from πb. For sub-population-level estimands, we appropriately conditioned to identify units of interest (e.g.
females) in Figure 3.

Retrospective OPE and counterfactual reasoning. On the other hand, for retrospective OPE, requiring
counterfactual reasoning, the target unit(s) are fixed, identified by the task e.g. a fixed patient for individual-
level reasoning, all females we have observed so far for sub-population counterfactual OPE and all units
observed so far for population-level counterfactual OPE. To reason about the fixed patient then, the exogenous
latents corresponding to the unit are held fixed (for unit i, we restrict to exogenous Ui. Similarly for sub-
population-level estimation (e.g. females, we restrict to female units denoted by Ufemale over which we
take expectations post-intervention. The top row in Figure 3 highlight the corresponding causal estimand
(p(Y πeT (Ui)|HπbT ) for individual-level counterfactual OPE and EUfemale

[Y πeT (Ufemale)|HπbT ] for sub-population-
level counterfactual OPE). Figure 4 highlights how units are appropriately fixed, while the soft-intervention
using πe implies the actions will be sampled according to the intervened policy.
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Figure 4: Distinguishing Interventional (prospective), and Counterfactual (retrospective) OPE, using distinct
causal estimands. This figure depicts the distinction in the inference procedure (post-soft-intervention using
the evaluation policy) for each case. For interventional OPE or prospective off-policy tasks, new units
(samples from the MDP) are the target of inference. The appropriate estimand can be individual-level,
sub-population-level or population-level (and can be appropriately conditioned on post re-sampling during
inference). For counterfactual OPE or retrospective off-policy tasks, appropriate unit of inference (specific
individual/unit) or a sub-group of individuals (sub-population units) are held fixed for inference.

In the following we focus on two tasks (one retrospective OPE and one prospective OPE) to demonstrate that
effectively addressing all OPE tasks require assumptions on the data-generating process, outlining conditions
that result in identifiability from observational data, which also further determine the intermediate quantities
that may be required for estimation, and finally requirements for validation of OPE.

Example 1: Will all patients survive if we change the medication? This OPE task is corresponds
to a population-level prospective OPE estimand (green box) in Figure 3. As described in previous sections,
evaluating the (changed medication policy) based on data collected from (an old medication policy) corresponds
to a soft intervention that modifies the policy mechanism. As a prospective task, inference requires sampling
exogenous mechanisms from the prior that would allow to sample new units over which we take an expectation
to get a population level estimate. Nonetheless, apriori, it is unclear whether observational data HπbT is
sufficient to estimate the corresponding causal estimand, E[

∑T
t=0 γ

tY πet |H
πb
T ] (generally, but also in the

specific model shown in Figure 2).

We start with assuming that the data is generated from an MDP (Figure 2). We explain specific challenges
using the example of Importance sampling (IS), which is often used to get an unbiased estimate of this
estimand, when data is collected using policy πb. Below we demonstrate the IS-OPE estimand [Precup,
2000b] and highlight assumptions made along the way that relate to and can be implied from assumptions on
the data-generating mechanism.

ES,Y[

T∑
t=0

γtYt
πe |HT πb ] = ES,Y,At∼πe [

T∑
t=0

γtY Att |HT πb ] (1)

=

∫ T∑
t=0

γtY Att

T∏
t=1

p(Yt|At, St)πe(At|St)p(St+1|At, St)p(S0) (2)

=

∫ T∑
t=0

γtYt

T∏
t=1

p(Yt|At, St)πe(At|St)p(St+1|At, St)p(S0) (3)

=

∫ T∑
t=0

γtYt

T∏
t=1

p(Yt|At, St)πe(At|St)
πb(At|St)
πb(At|St)

p(St+1|At, St)p(S0) (4)

=

∫ T∑
t=0

γtYt

T∏
t=1

p(Yt|At, St)πb(At|St)
πe(At|St)
πb(At|St)

p(St+1|At, St)p(S0) (5)

=

∫ T∑
t=0

γtYt

T∏
t=1

p(Yt|At, St)πb(At|St)p(St+1|At, St)p(S0)︸ ︷︷ ︸
Trajectories under behavior policy

πe(At|St)
πb(At|St)︸ ︷︷ ︸

IS Re-weighting factor

(6)

Equation 6 shows importance re-weighting used on trajectories sampled from πb in order to obtain OPE
estimates corresponding to our target population-level estimand. From the derivation, we re-iterate and
highlight assumptions Precup [2000a]. First, Equation 2 implies a factorization of the data-generating process
which corresponds to the MDP assumption in Figure 2. Equation 3, replaces interventional random variables
with observed counterparts due to sequential ignorability, which follows from the structural assumption of the

5



MDP and the backdoor-criterion [Richardson and Robins, 2013]: Y att , Y
a′t
t , · · · ⊥ At|Ht. Finally, Equation 6,

is estimable due to assumptions of overlap: that the support of πe(At|St) > 0 wherever πb(At|St) > 0.
More specifically, when we assume ignorability conditioning to St, that is, Y att , Y

a′t
t , · · · ⊥ At|St, we assume

that the underlying DGP corresponds to the MDP as in Figure 2 (left). When these assumptions hold,
E[G(Hπe)|do(πe),HπbT ] is estimable as we show above and IS provides an unbiased estimate of our OPE
estimand.

Equation 6 therefore demonstrates how the causal estimand can be converted into a quantity estimable from
observational data, albeit under the assumptions we highlighted. More importantly, we demonstrate that IS
estimates of OPE are making implicit assumptions about observing all sources of confounding, overlap, and
focusing on an expected measure of the value. When attempting prospective OPE evaluation for sub-groups,
we further need to appropriately condition on (i.e. take expectations over sub-group identifying properties
such as females). When interested in individual-level prospective OPE estimation, we may be interested
in estimating not just the expected cumulative outcome but the complete distribution of the long-term
come, thus changing the estimand. The issue of identifiability is implicit in the assumptions of sequential
ignorability. When any parts of the state-space may be unobserved, this assumption may not be satisfied
thus rendering IS-based prospective OPE estimates biased (see Figure 5 for an example and Section 5 on
handling non-identifiability). We now turn a counterfactual OPE estimand to highlight how assumptions
tied to the structure and functional relationships thereof can make identifiability (as well as estimation and
validation) challenges transparent.

E[Y
At=a

′
t

t ] =
∑

a∈{at,a′t}

E[Y
At=a

′
t

t |At = a]p(a) (7)

Example 2: Would all patients have survived had we changed the medication? This OPE task,
as pointed in out in Figure 3 (yellow box on top right), is a retrospective OPE task at the population-level. The
most common example of this is the expected causal Effect of the Treatment on the Treated or ETT [Heckman,
1992], denoted by E[Y

At=a
′
t

t |At = at] (where at is the original medication and a′t is the changed medication.
Specifically, this evaluates the expected outcome had the patients been treated with a′t instead of at. Note
that this is an example of a hard intervention. The estimand is explicitly conditioning on evidence that
At = at from observational data, but counterfactually allowing the treatment to vary (to a′t) to reason about
the change in the mean. Another example, in the case of soft interventions, is when one may be interested in
understanding the expected outcome using policy πe having observed outcomes using policy πb retrospectively,
i.e. for the same set of patients treated with πb denoted as: E[Y πeT (U)|Y πbT ]. We show the non-identifiability
of ETT as an example here in the binary setting (note that this is a parametric assumption) as derived
in [Shpitser and Pearl, 2012b] for the case where Yt and At are binary in Equation 8. Note that Equation 7
can be written using law of total expectation. Then the target causal query is given by Equation 8.

E[Y
At=a

′
t

t |At = at] =
E[Y

At=a
′
t

t ]− E[Y
At=a

′
t

t |At = a′t]p(a
′
t)

p(at)
(8)

Thus to estimate ETT interventional quantities E[Y
At=a

′
t

t ] and E[Y
At=a

′
t

t |a′t] are required, at least without
further assumptions. Clearly, this estimand is not a function of observed variables directly, showing that such
estimation is non-identifiable from historical data collected based on the previous medication. However if some
experimental data is available, that allows us to anchor treatments to a′t, e.g. a randomized controlled trial,
both of these quantities can be estimated, providing us with a way to counterfactually reason about the effect
of alternative treatments on those who have been treated differently i.e. with at. In practice, some additional
assumptions like monotonicity of the effects for binary treatment on the outcome can enable identifiability
entirely from observational data and have been outlined in Pearl [2009, Chapter 9]. Identifiability with a
general notion of monotonicity for discrete SCMs is outlined in Oberst and Sontag [2019]. These identifiability
results again require ignorability/no unobserved confounding, thereby highlighting how these are closely
tied to structural assumptions on the data-generating mechanisms. Further note that these identifiability
results are applicable assuming treatments are binary and/or discrete. For other general estimands, it
may be possible to get off-policy (i.e. from observational data) estimates of retrospective OPE estimands
for specific data-generating assumptions, like no unobserved confounding and parametric assumptions like
linearity.

These examples highlight that many (at times strong) assumptions are necessary to reliably solve OPE
tasks, particularly retrospective OPE tasks. Challenges of identifiability can be further complex if the
corresponding estimand is individual-level and require estimating a complete probability distribution as
opposed to expectations. For the most general dynamic data-generating processes, identifiability of the
appropriate counterfactual estimands without parametric assumptions i.e. entirely based on the graphical
structure has been outlined in Shpitser and Pearl [2012a].

Formally, we are now in a position to define Counterfactual OPE and Interventional OPE. We focus on
the most general OPE estimand (i.e. the probability distribution over target counterfactual/interventional
quantity of interest) in each case and suggest that sub-population and/or population analogues can be
correspondingly outlined. Note that purely in terms of the causal estimand, and the corresponding causal
query, it is possible to unify these definitions (and notations) as is often the case in causality literature, we
argue that there is significant merit in making these distinctions transparent, particularly for OPE tasks to
explicitly contextualize contributions and ground the applicability of inferences made of OPE estimates.
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Definition 4. Counterfactual Off-Policy Evaluation: Counterfactual OPE corresponds to estimating the
outcome distribution of a policy πe based on a data set of trajectories HπbT , {S0, A1, Y1, · · · , ST−1, AT , YT }
generated independently by policy(ies) πb on units treated with πb corresponding to the causal estimand
P (G(HπeT (U))|HπbT ), where U selects the appropriate target unit(s) of the counterfactual intervention πe and
G(·) is a function of counterfactual outcomes/trajectories.

We now define Interventional OPE as follows:

Definition 5. Interventional Off-Policy Evaluation: Interventional OPE corresponds to estimating the
outcome distribution of a policy πe based on a data set of trajectories HπbT , {S0, A1, Y1, · · · , ST−1, AT , YT }
generated independently by policy(ies) πb on any prospective units treated with πe corresponding to the causal
estimand P (G(HπeT )|HπbT ) where G(·) is a function of interventional/prospective trajectories HπeT .

More generally, the two examples and our definitions highlight gap in ML specific OPE literature suggesting
OPE literature has largely focused on i) interventional analysis through off-policy evaluation, ii) focusing on
estimates of the population, such as expectations, as opposed to individuals or rarely sub-populations and iii)
assuming identifiability from observational data, thereby making tacit assumptions about the underlying
data-generating procedure [Tennenholtz et al., 2019, Namkoong et al., 2020, Singh et al., 2021]. Applications
like medical domains easily motivate the need for generalization along the lines summarized in Figure 3
as we are usually interested in evaluating patient level utility of policies, not just prospectively, but also
retrospectively. In the following we discuss implications for OPE based on its formalization as a causal
estimand. In particular, we propose that these distinctions be routinely highlighted, thereby clearly exposing
the underlying assumptions and hence applicability of corresponding estimands [Tennenholtz et al., 2019,
Singh et al., 2021, Namkoong et al., 2020, Oberst and Sontag, 2019]. We demonstrate the main utility of this
exposition and the proposed generalizations specifically along these factors of OPE has practical implications.
More specifically, these implications become clear by tying the associated estimation challenges to specific
sources of uncertainties in the system.

4 Sources of Uncertainty in OPE.
Generalizing OPE as a causal estimand naturally highlights two key technical challenges for progress in
OPE. These challenges are i) identifiability from available observational data, ii) estimation challenges.
These challenges essentially manifest as induced uncertainty in the OPE estimation process. The causal
characterization is useful because it further allows us to distinguish the nature of this uncertainty, and
helps outline the role of humans in aiding and improving both the above aspects, thereby systematically
mitigating the uncertainty in OPE estimation. Thus, these distinctions are not slight and have significant
implications on our attempts to answer fundamental questions about OPE. We first discuss the different
sources of uncertainty induced by the general characterization.

St St+1

Ut Ut+1At

Yt

At+1

St+2

Ut+2

Yt+1

πb πb

Figure 5: SCM analogue of a POMDP

1. Identifiability. Knowledge of the data-generating process, usually provided by human expertise, including
functional relationships can determine whether OPE using data collected from a behavior policy πb for another
policy πe is possible. Challenges like partial observability like in Figure 5 generally lead to non-identifiability
for OPE, if we do not include additional assumptions. Non-identifiability implies the OPE estimate cannot
be obtained even with infinite observational data from the behavior policy. This non-identifiability can be
characterized as irreducible uncertainty in the OPE of interest. Characterizing this uncertainty received
much less attention in ML literature for general causal inference Jesson et al. [2021a], let alone in OPE. Since
Example 1 is a case of identifiable prospective OPE evaluation, there is no irreducible uncertainty induced
due to non-identifiability. On the other hand, Example 2 suggests that without access to experimental data,
the ETT estimate will have irreducible noise, and that experimentation should allow for estimating E[Y at ] to
specifically target this source of uncertainty.

2. Estimation. Once the appropriate observational and experimental data required for identifiable OPE
are established, we may either have sufficient observational data, or collect some additional experimental
data to enable estimation. In practice, we often work with finite samples, which are in-turn used to estimate
the appropriate intermediate quantities that provide the OPE estimate. For example, Equation 6, requires
reasonable estimates of the dynamics model, and the behavior policy. In Example 2, we will obtain finite
sample estimates of E[Y At=at ] from experimental data. Finite sample issues induce additional source(s) of
uncertainty, in some cases requiring large amounts of observational/experimental data for accurate estimation.
This is true irrespective of the type of estimand, and might put additional demands on data-collection needs.
Since this uncertainty can be reduced by collecting additional data, this constitutes modeling or epistemic
uncertainty.
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Beyond structural assumptions about the data-generating process, parametric assumptions such as stationarity
of MDP dynamics further add to the source of modeling or epistemic uncertainty. For instance, non-stationary
exogenous variables often complicate model estimation, and can propagate uncertainty, thereby worsening
how severe violations of assumptions like sufficient overlap [Namkoong et al., 2020, Joshi* et al., 2021] are in
the estimation process. These assumptions are a form of parametric assumptions that leave some sources of
uncertainty irreducible (by absorbing non-stationarity into irreducible noise). Finally, lack of sufficient data,
or inappropriately accounting for confounding variables (i.e. state representations) can also introduce biases
in the estimate depending on the severity of violations of assumptions of ignorability and overlap [Cinelli
et al., 2020]. Issues of finite samples have only recently received attention and is necessary toward making
causal inference a practical reality in ML and statistics [Jung et al., 2021, Chernozhukov et al., 2018]

Given these insights, we discuss dominant sources of uncertainty for different OPE estimands through our
examples.

1. Example 1: This is an identifiable (from observational data assumed to be already available) interven-
tional/prospective OPE task. Thus, the key sources of uncertainty here are modeling uncertainty associated
with estimating intermediate quantities like dynamics estimation, and modeling the outcome p(Yt|St, At)
from finite samples.

2. Example 2: This example of ETT requires both observational data to estimate the marginal p(At), and
experimental data to estimate E[Y

At=a
′
t

t ] each inducing different sources of modeling uncertainty depending
on the amount and quality of available data. If only observational data is available, then this OPE estimand is
not identifiable, and the irreducible or aleatoric uncertainty corresponds to that induced due to our uncertainty
of the knowledge of E[Y

At=a
′
t

t ].

We now discuss the implication of characterizing these sources of uncertainty. First is the need to obtain
additional domain knowledge to reduce uncertainty associated with identifiability. In traditional causality
literature, the general focus of establishing counterfactual identifiability has been on graphical criteria with
less emphasis on parametric assumptions on the corresponding functional relationships between covariates of
interest. Of course there are several examples where making parametric assumptions can aid identifiability,
even if non-parametric identifiability does not hold Hernán and Robins [2020], Angrist et al. [1996], Wright
[1921]. Second is to resort to collecting experimental data, which in and of itself defeats the primary goal of
OPE. More specifically, we discuss how humans can play a critical role for OPE where the causal estimand
formalizes the type of human expertise and experimentation is required for practical OPE. We elaborate on
these implications in detail in the following section.

5 The Role of Humans in OPE
In this section, we illustrate how the causal estimand, and explicitly outlining the sources of uncertainty helps
to precisely characterize how human feedback should be incorporated and what the role can fill in improving
the reliability of OPE. In particular, the role of incorporating human expertise can be useful for: i) providing
modeling assumptions (and relaxations) under which we can describe the right causal OPE estimand, ii)
physical experimentation to aid identifiability, iii) mitigating sources of uncertainty to compensate for limited
data, and iv) providing assumptions that enable to understand the conditions for the validity of the OPE
estimand. In essence, most of these principled ways of incorporating human feedback can be chalked up to
reducing different sources of uncertainty and improving the reliability of OPE estimates. We now elaborate
on these distinct roles that human feedback can fulfill in OPE, while explicitly discussing the kind of benefit
it may provide.

Parametric assumptions and modeling constraints. In many situations, making additional modeling
assumptions can be sufficient and valid to establish some form of identifiability, depending on the application.
Human experts can assess the applicability of such assumptions to the domain, as well as provide any
additional constraints. For example, assumptions such as consistency, monotonicity [Pearl, 2009, Chapter
9], or generalizations thereof are often used in epidemiological literature to estimate counterfactuals from
observational data and have recently been explored in the context of OPE for model debugging [Oberst and
Sontag, 2019]. In Example 2, assuming treatments are binary is a form of simple parametric assumption
that can reduce the aleatoric uncertainty by reducing the number of interventional experiments that need to
be conducted. These assumptions aid identifiability by making fundamental assumptions about the nature
of counterfactuals, reducing aleatoric uncertainty. Additional knowledge like linearity and other functional
assumptions, like the availability of noisy proxies of confounders [Miao et al., 2018, Tennenholtz et al., 2019],
or availability of instrumental variables can help constrain the amount of online experimentation required for
OPE [Xu et al., 2020]. These assumptions can help reduce modeling uncertainty, during estimation as well as
reduce aleatoric uncertainty by constraining counterfactual distributions to specific functional forms.

When populations are heterogeneous, human input can additionally provide such functional assumptions
at a higher level of granularity by drawing from existing clinical knowledge. If the estimated dynamics
in models are unreliable or may shift across domains, domain knowledge about the amount of shift can
improve the robustness of OPE estimates in practice [Singh et al., 2021]. In many cases, observational data
may be insufficient, but experimentation is prohibitively costly or unethical. In such cases, domain experts
can provide auxiliary model information like disease kinematics, or biophysical models collected from prior
scientific experiments, as an alternative to simulating appropriate interventions [Adams et al., 2004, Ribba
et al., 2012]. This form of human or expert feedback can therefore reduce modeling uncertainty in the system.
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Figure 6: Roadmap for performing OPE in practice.

Most of these assumptions have been implicitly made to aid some form of identifiability in the most general
sense and focused on population-level identifiability.

Physical experimentation for aiding identifiability. Establishing non-identifiability of a causal esti-
mand corresponding to an OPE task can help identify the physical experimentation necessary to enable OPE
for all cases we outline in Figure 3. As we saw in Example 2, OPE tasks requiring counterfactual reasoning,
like ETT, might reveal the need for additional interventional/experimental data (or at the very least require
domain expertise that further help establish identifiability). We demonstrated in Equation (8), that in this
case, a combination of i) binary treatment and outcome (parametric assumption a human can provide and
justify) as well as ii) interventional/experimental data is necessary when no additional assumptions like
modeling assumptions can be justified. Without experimentation, there is irreducible uncertainty in the
system. Further, consider the POMDP in Figure 5 where the prospective/retrospective OPE is unidentifiable
(in expectation or for individual-level OPE). To aid identifiability, one primarily needs to collect unobserved
confounders. Thus, physical experimentation need not directly imply expensive experiments like a randomized
controlled trial, but could also help if additional confounding variables could be collected to establish identifi-
ability. Data collection for specific variables can be less prohibitive than an active collection of interventional
quantities and has been explored recently for (conditional) average treatment effect estimation [Wang et al.,
2020, Jesson et al., 2021b]. Nonidentifiability exacerbated due to unobserved confounding and lack of the
ability to experiment is the primary source of irreducible uncertainty or aleatoric uncertainty. Thus this form
of human feedback can explicitly reduce aleatoric uncertainty. We argue that this is the main challenge where
human input can further aid individual-level and retrospective OPE applications.

Mitigating estimation uncertainty from finite data. In many cases, while observational data collected
from behavior policy might be sufficient for identifiability, the amount of data might be insufficient, significantly
violating overlap assumptions which manifest in the increased variance of the OPE estimate. For instance, in
Example 1, we may have very few samples collected from behavior policy, or the state representation may be
high-dimensional. In these cases, humans may be able to analyze the validity of off-policy evaluation estimates
posthoc to, for instance, reduce our modeling uncertainty. To this end, Gottesman et al. [2020] propose using
humans to assess the validity of OPE estimates by manually analyzing the influential observations whose
removal increases the estimation error. Similar approaches consider using human expertise to learn shaped
control variates for variance reduction in OPE [Parbhoo et al., 2020] or using human expertise to define
admissible rewards for high confidence OPE [Prasad et al., 2019]. This is another form of reducing stochasticity
due to insufficient data i.e. reducing modeling uncertainty. While most existing work in this domain is
applicable for prospective OPE tasks (and specifically Example 1), focused on sub-population/population-
level OPE, there is significant potential for human input to reduce modeling uncertainty for retrospective
and individual-level OPE tasks.

Validating OPE estimates. Validation of OPE is a significant but critical challenge for practical utility.
The potential for human feedback is the least well explored especially for retrospective OPE. Technically,
sensitivity analysis models are the main modeling frameworks that can allow the incorporation of domain
knowledge that characterizes the severity of unobserved confounding in the system. For instance, it can help
validate prospective as well as retrospective OPE tasks for complex settings such as the POMDP (Figure 5).
Currently, the most commonly used sensitivity model known as the marginal sensitivity model, which
constrains deviations to the propensity of treatment in the presence of unobserved confounders, and has been
widely explored for population and sub-population-level prospective OPE in reinforcement learning [Kallus
and Zhou, 2020, Namkoong et al., 2020]. Model debugging of this kind has been explored for counterfactual
OPE for discrete SCMs for managing sepsis among diabetic patients in [Oberst and Sontag, 2019].
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6 A Roadmap for OPE in Practice
In this work, we motivate the need to generalize the purview of OPE in sequential decision-making, specifically
the need to distinguish prospective versus retrospective OPE tasks conducted at the individual, sub-population,
and population level. To operationalize the generalization, we argue that OPE tasks should be framed
in the context of the data generating process and a corresponding causal estimand. We discuss how this
operationalization can highlight and help mitigate fundamental OPE challenges related to identification,
estimation, and principally outline the role of human input to make OPE tasks practical. In doing so we
highlight many open questions. In this section, we conclude by providing a prescriptive roadmap for addressing
OPE tasks in practice, and technical challenges to consider along the way. Our prescriptive roadmap is
summarized in Figure 6.

Elicit goals of OPE using a causal estimand. By eliciting the appropriate causal estimand, we
can transparently identify whether an OPE task is prospective/retrospective and required at the level of
individuals, sub-populations, and population levels. More importantly, this allows us to consider whether
existing observational data collected from a behavior policy and additional assumptions can be justified to
estimate the corresponding estimand. The corresponding assumptions in terms of the data-generating process
(causal structure) and other assumptions (such as parametric assumptions) help provide precise specifications
of the claim and validity of the OPE estimand.

Outline and justify nature of human input. The primary goal of OPE is to enable the evaluation of
new policies based on observational data from behavior policies without additional experimentation. However,
we highlight situations human input may be necessary and justified to solve specific OPE tasks. Here
the form of human input can range from the need to conduct complex physical experimentation such as
randomized controlled trials or in the form of data collection. This form of human input is explicitly aimed
at mitigating non-identifiability issues. In some cases, human input might suffice to establish partial OPE
estimates (bounds on the OPE estimate as opposed to point estimates). Even if an estimand is identifiable,
we have to consider whether sufficient observational data is available to estimate the corresponding off-policy
estimand. Here human input can help mitigate modeling uncertainty associated with estimation challenges by
providing additional domain knowledge and would help improve the statistical properties of the corresponding
estimators.

Identify minimal validation requirements using causal desiderata. The nature and type of valida-
tion required of OPE estimands are clear by focusing on the assumptions, the appropriate causal estimand,
and the nature of human input incorporated to address identifiability and to obtain desirable estimation
properties. In particular, these desiderata further identify the nature of validation, in the form of sensitivity
analysis, specifically of the type that invalidates assumptions justified for the domain, the amount and nature
of unobserved confounding, or structural assumptions to clearly identify granular conditions under which
the OPE estimand is meaningful. Finally, to reliably deploy policies that are evaluated in this manner, it is
imperative to consider additional human factors that will allow for appropriate interpretation of recommen-
dations inferred from the OPE estimates under the specifications outlined by our desiderata. Note that most
generally, assumptions of the data-generating process, as we have assumed throughout the draft, is a form
of human expertise that allows to incorporate the most fundamental set of conditions of the domain under
which the OPE estimand can be formulated. Using observational data as a means to learn such structures
reliably is a nascent area called causal discovery or causal structure learning [Glymour et al., 2019].

In conclusion, these considerations should move us towards a more rigorous way of performing OPE in practice
and create a better understanding of those factors essential for making OPE reliable for practice.
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