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Abstract
Traditionally, research into the fair allocation of
indivisible goods has focused on individual fair-
ness and group fairness. In this paper, we explore
the co-existence of individual envy-freeness (i-EF)
and its group counterpart, group weighted envy-
freeness (g-WEF). We propose several polynomial-
time algorithms that can provably achieve i-EF
and g-WEF simultaneously in various degrees of
approximation under three different conditions on
the agents’ valuation functions: (i) when agents
have identical additive valuation functions, i-EFX
and g-WEF1 can be achieved simultaneously; (ii)
when agents within a group share a common valua-
tion function, an allocation satisfying both i-EF1
and g-WEF1 exists; and (iii) when agents’ valu-
ations for goods within a group differ, we show
that while maintaining i-EF1, we can achieve a 1

3 -
approximation to g-WEF1 in expectation. In addi-
tion, we introduce several novel fairness character-
izations that exploit inherent group structures and
their relation to individuals, such as proportional
envy-freeness and group stability. We show that
our algorithms can guarantee these properties ap-
proximately in polynomial time. Our results thus
provide a first step into connecting individual and
group fairness in the allocation of indivisible goods.

1 Introduction
Fairly allocating indivisible goods is a fundamental problem
at the intersection of computer science and economics [Stein-
haus, 1948; Moulin, 2004; Brandt et al., 2016]. A classic
problem in fair allocation involves the allocation of courses
to students [Budish and Cantillon, 2012; Hoshino and Raible-
Clark, 2014; Budish et al., 2016]. Courses have limited ca-
pacity, and therefore slots are often allocated via a central-
ized mechanism. Several recent works have explored a vari-
ety of distributive justice criteria; these broadly fall into two
categories – individual (e.g., that individual students are not
envious of their peers), and group (e.g. that students of cer-
tain ethnic, gender or professional groups are treated fairly
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overall). While both individual and group fairness have been
studied extensively in recent works, to our knowledge, there
have been no works proposing mechanisms that ensure both
concurrently. In this work, we seek to establish the following:

efficient mechanisms that concurrently ensure ap-
proximate individual and group fairness, for cer-
tain classes of agent valuation functions.

The tension between individual and group fairness exists in
a variety of allocation scenarios studied in the literature; for
example, when allocating reviewers (who, in this metaphor,
are the goods) to papers [Charlin and Zemel, 2013], it is
important to balance the individual papers’ satisfaction with
their allotted, and the overall quality of reviewers assigned
to tracks (e.g. ensuring that the overall reviewer quality
for the Learning and Adaptation track is commensurate with
that of reviewers for the Robotics track). Another exam-
ple is the allocation of public resources (such as housing, or
slots in public schools) [Abdulkadiroğlu and Sönmez, 2003;
Benabbou et al., 2018] – it is important to maintain fairness
towards individual recipients, as well as groups (such as eth-
nic or socioeconomic groups).

In this paper, we address the question of whether individ-
ually and group envy-free allocations can co-exist when allo-
cating indivisible goods. We present mechanisms that com-
pute approximately individually envy-free (EF) and group
weighted envy-free (WEF) allocations, where the approxima-
tion quality depends on the class of agents’ valuations.

1.1 Our Contributions
We design algorithms that (approximately) reconcile individ-
ual and group envy-freeness in the allocation of indivisible
goods. The strength of our results naturally depends on the
generality of the valuation classes we consider, with more
general valuations yielding worse approximation guarantees.

Our main technical analysis is in Section 3. In Section 3.1,
we show that when agents have identical valuation functions,
envy-freeness up to any good (EFX) can be achieved in con-
junction with group weighted envy-freeness up to one good
(WEF1). In Section 3.2, when agents within each group have
common valuation functions, then envy-freeness up to one
good (EF1) can be satisfied together with WEF1. In Section
3.3, when valuation functions are distinct, we show that we
can obtain a constant factor 1

3 approximation to WEF1 in ex-
pectation. Finally, Section 4 introduces several new notions



of individual/group fairness that rely on the relationship be-
tween individuals and their group structure, such as propor-
tional envy-freeness (PEF) in Section 4.1 and group stability
in Section 4.2. We supplement these definitions by proving
that our algorithms can achieve these fairness notions.

1.2 Related Work
Envy-freeness (EF) is an important individual fairness notion
in indivisible goods allocation [Moulin, 1995]. The existence
of approximate EF allocations in conjunction with other indi-
vidual fairness notions and welfare measures (such as propor-
tionality, pareto-optimality, maximin share) have been stud-
ied extensively [Aziz et al., 2019; Caragiannis et al., 2016;
Budish, 2016].

[Conitzer et al., 2019] and [Aziz and Rey, 2020] intro-
duce the notion of group fairness (applied to every group of
agents within the population), with both offering the “up to
one good” relaxation of removing one good per player.

Several works also suggest notions of group envy-freeness
[Benabbou et al., 2019; Kyropoulou et al., 2019]; we focus
on a recently proposed notion called weighted envy-freeness
(WEF) [Chakraborty et al., 2020].

2 Preliminaries
In the problem of allocating indivisible goods, we are given
a set of agents N = {p1, . . . , pn} and goods G =
{g1, . . . , gm}. Subsets of goods in G are referred to as bun-
dles. Agents belong to predefined groups (or types) T =

{T1, . . . , T`}. We assume that
⋃`
k=1 Tk = N , and that no two

groups intersect. Furthermore, each group Tk has a weight
wk, corresponding to its size, i.e. wk = |Tk|. Each agent
pi ∈ N has a non-negative valuation function over bundles
of goods: vi : 2G → R+. We assume that vi is additive, i.e,
that vi(S) =

∑
g∈S vi({g}). When all agents have the same

valuation, we denote their common valuation by v.
In our framework, we consider the direct allocation of

goods to agents, whilst taking into consideration agents’
group affiliation, and in the process achieving both individ-
ual and group envy-freeness. Thus, the group allocation is
not explicitly determined in the allocation process, but is in-
duced from the individual allocations A = (A1, ..., An) in-
stead. We denote Grpk(A) =

⋃
i:pi∈Tk

Ai as the induced
group bundle for gk. To keep our notations simple, for any
group Tk ∈ T , we will let Bk = Grpk(A) denote this in-
duced group bundle. We also let the group utility for Tk be
vTk

(Bk) =
∑
i:pi∈Tk

vi(Ai).
Envy-freeness was introduced by [Foley, 1967] (see also

[Brandt et al., 2016; Budish, 2016; Lipton et al., 2004]).
However, complete, envy-free allocations with indivisible
goods cannot always be guaranteed (e.g. with two agents and
one good, the agent without the good will always envy the
other). Thus, we make use of two popular relaxations of EF.

An allocation A = (A1, . . . , An) is individually envy-free
up to any good (EFX) if, for every pair of agents pi, pi′ ∈ N ,
and for all goods g ∈ Ai′ , vi(Ai) ≥ vi(Ai′ \ {g}). Similarly,
an allocationA is individually envy-free up to one good (EF1)
if, for every pair of agents pi, pi′ ∈ N , there is some good
g ∈ Ai′ such that vi(Ai) ≥ vi(Ai′ \ {g}).

[Chakraborty et al., 2020] recently introduced an extension
of the EF notion to the weighted setting, known as weighted
envy-freeness (WEF). In this setting, agents represent groups
where each group has a fixed weight. We use this notion to
capture inter-group envy. Similarly, we consider two relaxed
notions of WEF. The definitions below rely on the assumption
that the groups’ valuations of a bundle are the same regardless
of how goods are internally allocated according to A; this
is a valid assumption if we assume that valuation functions
of agents within a group cannot differ. In Section 3.3, we
introduce an extension of the WEF notion to deal with the
more general case.

An allocation A = (A1, . . . , An) is said to be weighted
envy-free up to one good (WEF1) if for every two groups
Tk, Tk′ , there exists some good g ∈ Bk′ such that vTk

(Bk)

wk
≥

vTk
(Bk′\{g})
wk′

. It is weighted envy-free up to any good
(WEFX) if this inequality holds for any g ∈ Bk′ .

Note that envy-freeness and weighted envy-freeness are re-
ferred to as EF and WEF respectively in the literature, but we
refer to them as i-EF and g-WEF henceforth, to highlight that
the former is an individual fairness concept, and the latter is
a group fairness concept.

3 Approximate i-EF and g-WEF Allocations
In this section, we analyze the existence of approximate indi-
vidual EF (i-EF) and group WEF (g-WEF) allocations.

3.1 All-Common Valuations
i-EFX allocations are known to exist within the restricted
setting of all-common valuations [Plaut and Roughgarden,
2018] (i.e. when all agents have identical valuation func-
tions). However, it turns out that g-WEFX is incompatible
with approximate i-EF notions (i-EFX or i-EF1), even when
all agents’ valuation functions are identical. Thus, we fo-
cus on the next best group fairness property: g-WEF1. We
propose the Sequential Maximin-Iterative Weighted Round
Robin (SM-IWRR) algorithm (Algorithm 1) that can, in the
all-common valuation setting, provably produce an allocation
that is both i-EFX and g-WEF1 in polynomial time.

Algorithm 1: Sequential Maximin-Iterative Weighted
Round Robin (SM-IWRR)

Input: set of agents N , set of goods G, set of groups
T , and valuation function v

Run the SM algorithm (see Algorithm 2) with inputs
N , G and v, and obtain output A′ = (A′

1, . . . , A
′
n).

Let A′
min = argmini:pi∈N v(A

′
i).

Initialize set of representative goods, R = {}.
for each A′

i ∈ A′ do
Create a new good ri with
v̂(ri) = v(A′

i)− v(A′
min) and add ri to R.

end
Run the IWRR algorithm (see Algorithm 3) with
inputs N , R, T and v̂, and obtain output A.

For each i ∈ {1, ..., n}, if good ri is in Aj , Aj ← A′
i.

return A = (A1, . . . , An)



Algorithm 2: Sequential Maximin (SM)
Input: set of agents N , set of goods G, and valuation

function v
while there are unassigned goods Gunassigned ⊆ G do

Let g ∈ Gunassigned be the next highest valued good.
Pick agent pi ∈ N with the least-valued bundle so
far (with arbitrary tie-breaking).
Ai ← Ai ∪ {g}
Gunassigned ← Gunassigned \ {g}

end
return A = (A1, . . . , An)

Algorithm 3: Iterative Weighted Round Robin
(IWRR)

Input: set of agents N , set of goods G, set of groups
T , and set of valuation functions {v1, . . . , vn}

while there are unassigned goods Gunassigned ⊆ G do
Select the group Tk ∈ T with the lowest weighted

bundle size, |Bk|
wk

(with any fixed tie-breaking).
Pick an agent pi ∈ Tk with the lowest |Ai|, where

ties are broken in favour of the one that has
highest marginal utility from a good in Gunassigned
(if there is still a tie, use any fixed tie-breaking).
Ai ← Ai ∪ {g}, where g ∈ Gunassigned is the good
pi values the most (arbitrary tie-breaking).
Gunassigned ← Gunassigned \ {g};

end
return A = (A1, . . . , An)

Intuitively, the SM-IWRR algorithm works by first assign-
ing goods to agents via the SM algorithm, such that the re-
sulting allocation is i-EFX. Then, since valuations are all-
common, the algorithm takes each bundle and treats it as a
single good, referred to as the representative good. The value
of each representative good is then reduced by the value of the
least-valued representative good. These representative goods
are then allocated to agents via the IWRR algorithm using
these values. Each agent then receives the bundle correspond-
ing to the representative good it was allocated.
Theorem 1. Under all-common, additive valuation func-
tions, the SM-IWRR algorithm returns an i-EFX and g-WEF1
allocation in polynomial time.

Proof Sketch. The proof of of the i-EFX property utilizes the
following two lemmas, along with the result of Theorem 3.3
in [Chakraborty et al., 2020] to show that the IWRR outputs
an g-WEF1 allocation.

Lemma 2. For all pi ∈ N , v̂(ri) is upper bounded by the
value of any one good in Ai.

Lemma 3. For any two groups Tk, Tk′ ∈ T , let Bk and Bk′
be the bundles of representative goods allocated to group Tk
and Tk′ respectively. If we have a g-WEF1 allocation of rep-
resentative goods to agents, then by replacing each represen-
tative good with its corresponding bundle, the allocation re-
mains g-WEF1.

Lemma 2 holds because the allocation A is i-EFX, so for
all pi ∈ N and any g ∈ Ai, v(Ai \ {g}) ≤ v(An). Then, as
valuations are additive, v(Ai)− v({g}) ≤ v(An), and hence
v̂(ri) = v(Ai)− v(An) ≤ v({g}). Lemma 3 implies that the
replacement step (of each representative good by its bundle)
in the SM-IWRR algorithm preserves the “up to one good”
guarantee.

3.2 Group-Common Valuations
Next, we consider the setting where agents in different groups
may have different valuations, but agents within any given
group have the same valuations. More formally, for each
good g ∈ G, and any two agents pi, pi′ ∈ Tk, vi(g) = vi′(g).

As the existence of i-EFX allocations in this setting is still
an open question [Plaut and Roughgarden, 2018; Caragiannis
et al., 2019; Chaudhury et al., 2020], we explore i-EF1 and
its compatibility with g-WEF1.

Theorem 4. Under group-common, additive valuation, the
IWRR algorithm returns an i-EF1 and g-WEF1 allocation in
polynomial time.

Proof Sketch. The i-EF1 property follows from the round-
robin nature of allocating goods to individuals, whereas the
proof of g-WEF1 is the same as that of Theorem 1.

3.3 General Valuations
Under this class of valuation functions, agents within a group
can have different (additive) valuations for each good, and so
a key consideration in characterising g-WEF is, for any two
groups Tk, Tk′ ∈ T , the valuation of a group Tk for another
group’s Tk′ bundle.

We will only consider the non-allocation based definition
for defining g-WEF (where valuations of a group for another
group’s bundle are quantified without reference to a specific
internal allocation mechanism). Thus, we focus on a more
general, albeit weaker, notion of g-WEF, which we term g-
WEF1 in expectation. Intuitively, instead of assuming that
items are allocated to all agents by some allocation mecha-
nism, we consider what the average utility would be if we
were to allocate each item to a uniformly random agent.

Definition 5 (g-WEF1 in expectation). An allocation
A = (A1, . . . , An) is weighted envy-free up to one
good (g-WEF1) in expectation if, for every two groups
Tk, Tk′ ∈ T , there exists some good g ∈ Bk′

such that vTk
(Bk)

wk
≥ vTk

(Bk′\{g})
wk′

, where vTk
(Bk′) =

1
wk

∑
i:pi∈Tk

(∑
g′∈Bk′ vi(g

′)
)

.

We say that an allocation is g-WEF1 in expectation up to a
factor of 1

γ for some constant γ if the condition in Definition

5 is replaced by vTk
(Bk)

wk
≥ 1

γ ·
vTk

(Bk′\{g})
wk′

. Then, we have
the following result.

Theorem 6. Under general, additive valuation, the IWRR al-
gorithm returns an i-EF1 allocation that is g-WEF1 in expec-
tation up to a factor of 1

3 .

Proof Sketch. By analyzing each round (each agent gets one
good in every round) at a time, for any two groups Tk and



Tk′ , we can show that every time an agent in Tk selects a
good g, the average value (in Tk’s view) of the set of goods
that can be chosen by the remaining agents from Tk′ (who
have not picked any good in that round) is, in the worst case,
three times that of g, thereby giving rise to the approximation
factor.

4 Additional Notions of Fairness
In addition to our studies on attaining individual and group
fairness simultaneously, we introduce fairness properties that
rely on the relationship between individuals and their group
structure. By doing so, we seek to provide further insight
into the intricacies of fairness in allocation problems involv-
ing groups of agents.

4.1 Proportionally Envy-Free (PEF) Allocations
The first property we introduce, PEF, is a hybrid (and exten-
sion) of two existing notions of fairness – individual propor-
tionality (i-PROP) [Brams and Taylor, 1996] in the fair divi-
sion literature, and g-WEF introduced in Section 2. A PEF
allocation can be interpreted as a middle-ground between i-
PROP and g-WEF. It mandates that every agent value their
bundle as much as they value any other group’s bundle, nor-
malized by the group size. As usual, we introduce the “up to
one good” relaxation of this notion.
Definition 7 (Proportionally envy-free up to one good). An
allocation A = (A1, . . . , An) is proportionally envy-free up
to one good (PEF1) if, for any agent pi ∈ N and group Tk ∈
T , there exists g ∈ Bk \Ai such that vi(Ai ∪{g}) ≥ vi(Bk)

wk
.

It is known that i-EF1 implies i-PROP1 [Conitzer et al.,
2017]. The following theorem provides a connection between
PEF1 and these properties.
Proposition 8. i-EF1 implies PEF1. Additionally, when all
of the group sizes (and hence weights) are equal, PEF1 im-
plies i-PROP1.

As such, the SM-IWRR and IWRR algorithms naturally
satisfies PEF1 (and i-PROP1 in the case of equal-size groups)
in addition to the guarantees already shown.

4.2 Group Stable Allocations
There are scenarios whereby agents are able to declare a one-
time membership to a group, and other instances where they
can opt not to join any group at all, before the allocation pro-
cess begins. This is in contrast to settings whereby agents
inherently belong to certain groups, such as ethnic groups in
housing allocation problems [Benabbou et al., 2018]. We in-
troduce the notion of group stability, and consider the “up
to one good” relaxation of the concept for use in our alloca-
tion problem. The significance of introducing such a notion
is also exemplified in settings where the strategic reporting
of membership to groups may result in undesirable effects.
For instance, in the conference peer review setting, authors
have the option to declare a track for the paper. This may
invite strategic misreporting about the most appropriate track
for the paper, in a bid to improve the chances of acceptance.
We would like to introduce a stability notion that discourages
this behaviour.

An allocation mechanismM : N×G×T ×V → |N |G is a
function that takes in the set of agents, goods, group member-
ships, and valuations (where V is the set of all agents’ valua-
tion functions), and outputs an allocation of goods to agents.
We only consider deterministic allocation mechanisms, but
the definitions can easily be extended to consider randomized
ones as well. We first introduce the two properties that con-
tribute to such a notion of stability.
Definition 9 (Individual rationality up to one good). An al-
location A = (A1, . . . , An) returned by some mechanism
M(N,G, T , V ) is individually rational up to one good (IR1)
if, for every agent pi ∈ N , there exists some good g ∈ A′

i
such that vi(Ai) ≥ vi(A

′
i \ {g}), whereM(N,G, T ′, V ) =

A′ = (A′
1, ..., A

′
n), and T ′ is equivalent to T with the differ-

ence being pi is now in a group on its own.
Definition 10 (Regret-free up to one good). An alloca-
tion A = (A1, . . . , An) returned by some mechanism
M(N,G, T , V ) is regret-free up to one good (RF1) if, for
every agent pi ∈ N , and every group Tk ∈ T , there exists
some good g ∈ A′

i such that vi(Ai) ≥ vi(A(k)
i \ {g}), where

M(N,G, T (k), V ) = A(k) = (A
(k)
1 , ..., A

(k)
n ), and T (k) is

equivalent to T with the difference being pi is now in Tk.
Then, an allocation A is said to be group stable up to one

good if all agents pi ∈ N are IR1 and RF1. The follow-
ing theorem affirms that this property is achievable, further
strengthening the fairness guarantees provided by these algo-
rithms.
Theorem 11. The SM-IWRR and IWRR algorithms returns
an allocation that is group stable up to one good.

Proof Sketch. By examining the round-robin and weighted
round-robin nature (at the individual and group level respec-
tively) of the algorithms, we show that switching groups can
introduce envy of at most up to one good, thereby giving us
the IR1 and RF1 property.

5 Conclusions and Future Work
In this work, we show that individual fairness may come at
the cost of group fairness. Group fairness is a great way to
ensure diversity in outcomes [Benabbou et al., 2019]. Our
work attempts to reconcile diversity with individual demands.
We study the existence of allocations that satisfy individ-
ual and group (weighted) envy-freeness simultaneously, and
show that when agents’ additive valuations are identical or
at least common within groups, existing approximations of
envy-freeness at both individual and group levels are com-
patible and achievable concurrently. In the case of general,
additive valuations, in mandating i-EF1, the IWRR algorithm
achieves g-WEF1 in expectation up to a factor of 1

3 . We also
introduce two new notions of fairness – PEF and Group Sta-
bility – that exploit the group structure inherent in numer-
ous problem domains. We show that both the SM-IWRR and
IWRR algorithms achieve relaxed variants of these properties
in addition to their individual and group fairness guarantees.

We thus believe that our work establishes foundations for
further in-depth studies into fairness notions in order to un-
derstand and reconcile individual and group fairness proper-
ties in the problem of allocating indivisible goods.
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