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Abstract

A robust testing program is necessary for contain-
ing the spread of COVID-19 infections before a
vaccine becomes available. However, due to an
acute shortage of testing kits (especially in low-
resource developing countries), designing an opti-
mal testing program/strategy is a challenging prob-
lem to solve. Prior literature on testing strategies
suffers from two major limitations: (i) it does not
account for the trade-off between testing of symp-
tomatic and asymptomatic individuals, and (ii) it
primarily focuses on static testing strategies, which
leads to significant shortcomings in the testing pro-
gram’s effectiveness. In this paper, we introduced a
scalable Monte Carlo tree search based algorithm
named DOCTOR, and use it to generate the op-
timal testing strategies for the COVID-19. In our
experiment, DOCTOR’s strategies result in ∼40%
fewer COVID-19 infections (over one month) as
compared to state-of-the-art static baselines. Our
work complements the growing body of research
on COVID-19, and serves as a proof-of-concept
that illustrates the benefit of having an AI-driven
adaptive testing strategy for COVID-19.

1 Introduction
COVID-19 (or coronavirus) is an urgent public health crisis
- within nine months, COVID-19 has infected more than 35
million people, and has resulted in ∼1 million deaths world-
wide [World Health Organization2020]. In fact, it has been
declared as a global pandemic by the World Health Organi-
zation (WHO) [Cucinotta and Vanelli2020]. Unfortunately,
despite the enforcement of stringent preventive measures, the
spread of COVID-19 still does not appear to be slowing down.

As studied in [Winter and Hegde2020, Salathé et al., Bin-
nicker2020], a robust COVID-19 testing program is neces-
sary for containing the spread of infections, as it can: (i) help
identify and quarantine infected patients, which can break
the chain of COVID-19 transmissions and reduce the total
number of infections; and at a higher level, (ii) aggregate
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results from COVID-19 testing programs can help epidemi-
ologists and policy makers in determining where communi-
ties/states/countries are on the epidemic curve, which enables
them to take more well-informed decisions about the removal
of current stay-at-home orders [Wikipedia2020a]. However,
designing the optimal testing program for COVID-19 is a
challenging problem because of three major reasons. First, in
addition to testing individuals with symptoms who show up
at the hospital (i.e., symptomatic testing), the CDC also rec-
ommends testing individuals without symptoms in the pub-
lic (i.e., asymptomatic testing) in order to detect COVID-19
early and stop transmission quickly [Centers for Disease Con-
trol and Prevention2020b]. Second, policy makers (especially
in developing countries) are constrained in the number of tests
(both symptomatic and asymptomatic) that they can conduct
on a daily basis, and thus, they need to strategically allocate
their limited number of tests among symptomatic and asymp-
tomatic patients. Finally, an optimal testing strategy needs
to be adaptive, as the number of symptomatic/asymptomatic
tests per day should be increased/decreased adaptively de-
pending on the number of positively diagnosed people in pre-
vious days of testing. Therefore, policy makers need to intel-
ligently allocate their limited resources (i.e., limited number
of COVID-19 testing kits) over a prolonged period of time in
order to minimize the total (cumulative) number of COVID-
19 infections.

However, to this date, while almost every country has
a COVID-19 testing strategy in place, these strategies are
mostly static (i.e., non-adaptive), potentially causing sig-
nificant shortcomings in their effectiveness in containing
COVID-19 (we validate this in our experimental analysis).
In this paper, we overcome this limitation via three novel
contributions. First, we propose the DOCTOR (Design of
Optimal COVID-19 Testing Oracle) model, which casts the
COVID-19 testing problem as a Partially Observable Markov
Decision Process (POMDP). Second, we solve DOCTOR’s
POMDP model using a Monte Carlo tree search based al-
gorithm [Silver and Veness2010]. Our POMDP based al-
gorithm has three key novelties: (i) it models the spread
of the COVID-19 virus via SEIR model dynamics [Aron
and Schwartz1984]; (ii) it optimally trades off between the
amount of resources (i.e., testing kits) that should be invested
in symptomatic versus asymptomatic testing to find the opti-
mal testing strategy; and (iii) our POMDP model adaptively



updates its future long term policy based on aggregate testing
results (i.e., how many symptomatic and asymptomatic tests
came out positive, etc.) from previous rounds. Finally, and
most importantly, we also provide a rigorous experimental
analysis of DOCTOR’s testing strategy against static testing
programs to illustrate the effectiveness of our approach. Our
experiments reveal that DOCTOR’s testing strategy was able
to outperform state-of-the-art baselines by achieving ∼40%
fewer COVID-19 infections, when applied to city of Santi-
ago, Panama. The result illustrates the benefit of having an
adaptive strategy.

COVID-19 is the greatest public health crisis that the world
has experienced in the last century. Tackling it requires
the collective will of experts from a variety of disciplines.
While a lot of efforts have been made by AI researchers in
developing agent-based models for simulating the transmis-
sion of COVID-19 [Wilder et al.2020, Yang et al.2020, Hu
et al.2020], we believe that AI’s enormous potential can (and
should) be leveraged to design decision support systems (e.g.,
in the allocation of limited healthcare resources such as test-
ing kits) which can assist epidemiologists and policy makers
in their fight against this pandemic. Our work represents the
first step in developing such a decision support system, and
should serve as a proof-of-concept that illustrates the benefit
of having an AI-driven adaptive testing strategy.

2 The COVID-19 Testing Setup
SEIR Transmission Model. The SEIR model is a popular
epidemiological model for simulating the progression of an
epidemic through a population of individuals, and it has been
used to successfully simulate the outbreak of many infectious
diseases, e.g., Ebola [Lekone and Finkenstädt2006], COVID-
19 [Karunditu et al.2019,Pandey et al.2020], etc. In the stan-
dard SEIR model, a population of N individuals is split into
four compartments: (i) Susceptible (S), i.e., individuals who
have never been infected or exposed to the COVID-19 virus;
(ii) Exposed (E), i.e., individuals who have been exposed to
the virus, but are not infectious yet; (iii) Infectious (I), i.e.,
individuals who have been infected and can spread infection
to other individuals; and (iv) Recovered (R), i.e., individuals
who have recovered or died from the virus. Each of the four
compartments represent a distinct phase in the progression of
infectious diseases.

Further, to capture the most essential characteristics of
COVID-19 transmission, we made two major adaptations to
the standard SEIR model: (i) similar to He et al. [He et
al.2020], the I class is split into I1 and I2, which repre-
sents asymptomatic and symptomatic infected patients, re-
spectively; (ii) we introduce a new compartment class named
Hospitalization/Quarantine (H/Q), which represents individ-
uals who are either hospitalized or are observing strict quar-
antine orders. Our two adaptations are necessary for mod-
eling COVID-19 as (i) there is a high asymptomatic rate
of COVID-19 infections [Centers for Disease Control and
Prevention2020a, Carl Heneghan2020, Nishiura et al.2020],
which can not be distinguished by the single I class in the
standard SEIR model; and (ii) introducing the H/Q compart-
ment enables us to model infected individuals who do not

Figure 1: Flow Dynamics of our SEIR Model

spread infection to anybody else (either because they are hos-
pitalized or they observe strict stay-at-home quarantine or-
ders).

Our SEIR model dynamics proceed in a series of discrete
time steps. Let there be a population of N individuals that
undergo SEIR model transmission dynamics. Let T denote
the number of time steps for which the SEIR model dynam-
ics are allowed to run. Each individual n ∈ {1, N} belongs
to exactly one compartment at time t = 0. At each time
t ∈ {1, T}, individuals in each compartment ‘flow’ to the
next adjacent compartment at pre-determined rates. The flow
dynamics of our model are explained in Figure 1. In particu-
lar, individuals in S move to E at a rate αS→E , individuals in
E move to I1 and I2 at rates αE→I1 and αE→I2 , respectively.
Similarly, individuals in I1 and I2 move to R at rates αI1→R
and αI2→R. Also, individuals in H/Q move to R at a rate
αH/Q→R. Finally, individuals in R do not take further part in
transmission dynamics (i.e., we assume infected individuals
upon recovery cannot be re-infected).

Our goal in the COVID-19 testing problem is to minimize
the cumulative number of individuals that are infected by
COVID-19 (i.e., individuals in I1 and I2) across T time-steps
of transmission. In order to achieve this goal, we need to for-
mulate a sequential testing policy (formally defined below)
that optimally allocates available testing kits to test symp-
tomatic and asymptomatic individuals. We now elaborate on
this distinction between conducting tests for symptomatic and
asymptomatic individuals.

Symptomatic VS Asymptomatic Testing. As part of the
optimal testing policy, we assume that the policy maker is al-
lowed to use his/her available COVID-19 testing kits to con-
duct two different kinds of tests: (i) Targeted Symptomatic
Testing; and (ii) Random Asymptomatic Testing.

Targeted Symptomatic Testing (symptomatic testing, in
short) focuses only on the people who exhibit COVID-19
symptoms and seek care at hospitals. The testing kits that
are allocated for symptomatic testing would be distributed (in
advance) across different hospitals. Only patients that show
up at hospitals with COVID-19 like symptoms will be tested
using these symptomatic testing kits. In our SEIR model, in-
dividuals in I2 can get tested using symptomatic testing kits
(as all individuals in I2 are symptom-showing COVID-19 pa-
tients). In addition, we assume that a fraction of individuals in
other compartments can suffer from Influenza Like Illnesses
(ILI), and hence these ILI patients also show up at hospitals
with COVID-19 like symptoms (we set this ILI fraction to
0.24 in our experiments, based on prior results [Silverman et



al.2020]). Thus, in our SEIR model, these ILI patients can
also be tested with symptomatic testing kits.

Unfortunately, symptomatic testing is not sufficient by it-
self, as (i) a large proportion of COVID-19 patients are
asymptomatic (i.e., do not exhibit any symptoms), and hence
they may never go to hospitals to get treated [Centers for
Disease Control and Prevention2020a, Carl Heneghan2020,
Nishiura et al.2020]. However, such asymptomatic patients
can still spread the virus very rapidly among other individ-
uals [Bai et al.2020, Yu and Yang2020]. (ii) Further, due
to this large population of asymptomatic virus carriers, it is
very difficult for epidemiologists and policy makers to un-
derstand where they are on the epidemic curve solely on the
basis of symptomatic testing. In order to address this issue,
we also consider Random Asymptomatic Testing as an op-
tion available to the policy maker. In our SEIR model, Ran-
dom Asymptomatic Testing (asymptomatic testing, in short)
focuses on all the individuals in S, E, I1, I2 and R, and ran-
domly samples m individuals uniformly from these compart-
ments to conduct COVID-19 tests on them (if the testing pol-
icy allocates m testing kits for asymptomatic testing).

Note that the positive COVID-19 diagnosis rate per test is
much higher for symptomatic tests as compared to asymp-
tomatic tests. Thus, while asymptomatic tests are essential
to tackle infectious individuals in I1, they are not as efficient
as symptomatic tests in discovering COVID-19 patients. To
increase the efficiency of asymptomatic tests, we also incor-
porate group testing for asymptomatic tests in our optimal
testing problem [Sunjaya and Sunjaya2020,Yelin et al.2020].

3 DOCTOR POMDP
We cast the optimal testing problem as a POMDP because
of three reasons. First, we have partial observability of the
sizes of the S, E, I1 and R compartments in the optimal
testing problem (similar to POMDPs). Second, similar to
sequential POMDP actions, we are allowed to make D se-
quential changes to the testing policy (one change per each
of the D decision points). Finally, POMDP solvers have re-
cently shown great promise in generating near-optimal poli-
cies efficiently [Yadav et al.2016b, Yadav et al.2016a, Yadav
et al.2017, Ghandali et al.2020]. We now explain how we
map the optimal testing problem into a POMDP.

States. A POMDP state in our problem is a tuple s =
S,E, I1, I2,H/Q,R, where variables S, E, I1, I2, H/Q
and R denote the number of individuals present inside the
corresponding compartments of the SEIR model. For a
POMDP state to be valid, we require S + E + I1 + I2 +
H + R = N . Our POMDP has

(
N+5
5

)
states.

Actions. At each decision point d ∈ {1, D}, the policy
maker has a total of Ucap COVID-19 testing kits that need
to be allocated for testing individuals. An action inside our
POMDP is a tuple a = b1, b2, s.t. b1 ≥ 0, b2 ≥ 0 and
b1+b2 = Ucap. Intuitively, b1 and b2 represent the number of
testing kits that have been allocated for testing symptomatic
and asymptomatic individuals, respectively. Our POMDP has
Ucap + 1 different actions.

Observations. Upon taking a POMDP action, we assume
that the policy maker can “observe” the COVID-19 test re-

sults (positive or negative) of all individuals who were tested
as part of the POMDP action. Formally, upon taking action
Bd at decision point d, the POMDP observation is denoted as
a binary vector (of length Ucap) Θ = θ1, θ2, . . . , θUcap

. The
variable θi = 1, ∀i ∈ {1, Ucap} represents whether the ith
individual (who was tested in POMDP action Bd) was diag-
nosed with COVID-19 (θi = 1) or not (θi = 0). Our POMDP
has O(2Ucap) observations.

Rewards. The cost R(s, a, s′) of taking action a in state s
to reach state s′ is the number of active infected individuals
in state s′. Over D decision points, DOCTOR’s cost function
serves as a proxy for minimizing the cumulative number of
COVID-19 infections.

Transition & Observation Probabilities. Computa-
tion of exact transition and observation probability matrices
(T (s′|s, a) and O(o|a, s′), respectively) is infeasible in our
POMDP because these matrices are prohibitively large (due
to large sized state, action and observation spaces). There-
fore, we follow the paradigm of large-scale online POMDP
solvers [Silver and Veness2010, Eck and Soh2015] by using
a generative model Λ(s, a) ∼ (s′, o, r) of the transition and
observation probabilities. This generative model allows us
to generate on-the-fly samples from the exact distributions
T (s′|s, a) and Ω(o|a, s′) at low computational costs. Given
an initial state s and an action a, our generative model Λ sim-
ulates the random process of SEIR model dynamics (as ex-
plained in Figure 1) to generate a random new state s′, an
observation o and the obtained reward r. Simulation is done
by “playing” out our SEIR model to generate sample s′. The
observation sample o is then determined from s′ and a. Fi-
nally, the reward sample r depends on the number of active
infected COVID-19 patients in s’ (as defined above). This
simple design of the generative model allows significant scale
and speed up.

Initial Belief State. In our experiments, we initialize the
belief state to be as close as possible to the real-world. In
particular, the initial belief state is uniformly distributed over
all POMDP states s in which I is set to the current number
of COVID-19 infections in the population of interest. Then
I1 and I2 are split from I based on COVID-19 asymptomatic
rate φ (we experiment with different φ values). For example,
if we instantiate a SEIR model for Santiago, the initial belief
state contains all states in which I is equal to current number
of active cases in Santiago. And if we assume the φ = 0.7,
then |I1| = 0.7 |I|, and |I2| = 0.3 |I|.

At last, in this paper, we solve the DOCTOR POMDP
model using POMCP [Silver and Veness2010], a well-known
online POMDP solver that relies on Monte Carlo tree search
to find near-optimal online policies.

4 Experimental Results
We evaluate DOCTOR’s effectiveness in controlling the
spread of COVID-19 by applying its testing strategy (in sim-
ulation) to the city of Santiago, Panama (a country with
the world’s highest COVID-19 infections per capita [Arm-
strong2020]). Our experiments are run on a 2.8 GHz Intel
Xeon processor with 256 GB RAM. All experimental results
are averaged over 100 runs and are statistically significant un-



der bootstrap-t (p = 0.05). In these experiments, we use
a default value of N = 89, 000 (which is Santiago’s pop-
ulation [Wikipedia2020b]), D = 30 and T = 30. Based
on findings in [Sunjaya and Sunjaya2020, Yelin et al.2020],
COVID-19 test sensitivity and specificity values are set to
0.90 and 0.99, respectively. Also, we set a default budget
constraint of Ucap = 500 testing kits per decision point in
our experiments (unless specified otherwise). The POMCP-
based DOCTOR model is run with 210 Monte-Carlo sim-
ulations at each decision point. Further, in all our exper-
iments, we use results from [Foundation2020] to instanti-
ate our SEIR model with the following values of flow rates:
αE→I1 = 7

50 , αE→I2 = 3
50 , αI1→R = 1

14 , αI2→R = 1
14 ,

and αH/Q→R = 1
14 . In particular, the value of αS→E is

dependent on the basic reproduction number of COVID-19
(R0) and the number of individuals in I, which is denoted
as αS→E = β·S·I

N , β =
R0·αI1→R·αI2→R

2 , where β repre-
sents the COVID-19 transmission rate. Based on [Liu et
al.2020, Zhang et al.2020], we assume R0 = 2.0.

Baselines. We compare DOCTOR against four different
baseline testing strategies. We use (i) 100% symptomatic test-
ing (SY in the figures), i.e., allocate all available testing kits to
symptomatic individuals at each decision point. We use SY as
a baseline as this has been the primary testing strategy used by
Panama’s government until now, e.g., Panama had not tested
asymptomatic individuals until 4th September, 2020 [Pana-
Times2020]. Using this baseline allows us to compare DOC-
TOR with a real-world government’s effort (in simulation).
Next, we use (ii) 100% asymptomatic testing (ASY), i.e., al-
locate all available testing kits to asymptomatic individuals;
(iii) 50% symptomatic and 50% asymptomatic testing (50-
ASY), i.e., equally divide testing kits among symptomatic
and asymptomatic individuals; and finally (iv) a uniform ran-
dom testing policy (Random), i.e., select a random testing
action Bd at every decision point d ∈ D.

4.1 DOCTOR’s performance in Panama
First, we evaluate the performance of DOCTOR’s testing pol-
icy against all other baselines, when applied to the city of San-
tiago, the 5th largest city in Panama. Since city-level COVID-
19 case information is not available for Panamanian cities,
we initialize Santiago’s SEIR model using Panama’s country-
level COVID-19 case information. In particular, we set the
initial SEIR compartment proportions to S = 97.47%,E =
0.27%, I1 = 0.45%, I2 = 0.19%,R = 1.62%,H/Q = 0%,
which matches the COVID-19 infection numbers in Panama
on 2nd September, 2020. Note that H/Q is set to zero be-
cause we only count H/Q from the beginning of the testing
period. Next, DOCTOR and the other baselines were used to
solve an optimal testing problem (defined according to this
instantiated SEIR model and the other parameter values de-
scribed above).

Figure 2 compares the result of executing DOCTOR’s test-
ing policy against baselines by tracking the evolution of the
underlying SEIR model over D = 30 decision points. Fig-
ures 2(a), 2(b), 2(c) and 2(d) show the progression in the sizes
of S, I, I1 and I2 compartments of the SEIR model (respec-
tively) over D = 30 decision points. The X-axis in these fig-
ures represents the different decision points, and the Y-axis

shows the size of the different compartments. For example,
DOCTOR’s testing strategy achieved a size of |S| = 85, 528,
|I| = 136, |I1| = 120 and |I2| = 16 after the 30th decision
point.

Figure 2(b) shows that DOCTOR significantly outperforms
all baselines - its testing strategies result in ∼ 40% fewer
COVID-19 infections by the 30th decision point (as com-
pared to ASY, the next best performing baseline). Further,
this figure shows that SY performs very poorly - it performs
∼ 60% worse than Random and ASY-50, and it leads to a ∼
550% increase in COVID-19 infections over DOCTOR. This
establishes the superior performance of DOCTOR over SY
(and other baselines), which illustrates the potential benefits
of using DOCTOR’s adaptive strategy in Panama.

(a) Evolution of S (b) Evolution of I

(c) Evolution of I1 (d) Evolution of I2

Figure 2: Evaluating DOCTOR’s performance in Panama

Figures 2(c) and 2(d) provide a preliminary insight into
how DOCTOR achieves significant reductions in the num-
ber of COVID-19 infections. Specifically, these figures show
why baseline testing strategies fail: (i) ASY performs only
∼ 30% worse than DOCTOR in minimizing asymptomatic
infections |I1|, but performs ∼ 300% worse than DOCTOR
in minimizing symptomatic infections |I2| (since ASY only
tests asymptomatic individuals). (ii) On the other hand, SY
performs ∼ 300% worse than DOCTOR in minimizing |I2|,
and performs ∼ 550% worse than DOCTOR in minimizing
|I1| (since SY only focuses on symptomatic individuals). (iii)
ASY-50’s behavior is not as extreme as SY (in Figure 2(c)) or
ASY (in Figure 2(d)), yet it performs worse than DOCTOR
due to its lack of adaptivity. (iv) DOCTOR is the only strat-
egy which intelligently minimizes both |I1| and |I2| by adap-
tively changing the allocation of testing kits according to the
stage of the epidemic. (v) Further, DOCTOR’s testing strat-
egy results in the largest |S| at the end of the 30th decision
point (Figure 2(a)), which illustrates DOCTOR’s (relative)
success in preventing susceptible individuals in S from get-
ting infected. These figures show that at least in simulation,
DOCTOR was highly effective in controlling the number of
COVID-19 infections in Santiago.
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