
Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal
University of Waterloo, Canada
sushant.agarwal@uwaterloo.ca

Abstract
The concerns of fairness, and privacy, in machine
learning based systems have received a lot of atten-
tion in the research community recently, but have
primarily been studied in isolation. In this work, we
look at cases where we want to satisfy both these
properties simultaneously, and find that it may be
necessary to make trade-offs between them. We
prove a theoretical result to demonstrate this, which
considers the issue of compatibility between fair-
ness and differential privacy of learning algorithms.
In particular, we prove an impossibility theorem
which shows that even in simple binary classifica-
tion settings, one cannot design an accurate learn-
ing algorithm that is both ε-differentially private
and fair (even approximately).

1 Introduction
Technology has entered most aspects of our lives, with auto-
mated systems being deployed to make consequential deci-
sions, such as predicting recidivism rates in released prison-
ers, and estimating the probability of an applicant returning a
loan. Now, because these systems are making decisions that
are potentially life-altering for many people, there have been
many ethical questions raised about how they function. We
will look at two ethical considerations in this work: fairness,
and privacy. We would like the system to be fair, and not dis-
criminate against an applicant just because of their member-
ship in a minority/protected group (which could be a particu-
lar race, gender, etc.). The second concern is privacy. Now,
because these decision making systems are typically machine
learning models, and are trained on potentially sensitive data,
we would not like to inadvertently leak information about
people in the training data, and would like to protect their
privacy.

These concerns have received a lot of attention in the re-
search community in the last few years [Chaudhuri et al.,
2011; Corbett-Davies and Goel, 2018; Dwork et al., 2006,
2014, 2012; Kleinberg et al., 2017; Feldman et al., 2015].
However, they have primarily been studied in isolation, that
is, people have primarily looked at scenarios in which we
would want to satisfy one of these properties at a time. In
this work, we look at a case where we want to satisfy these

properties simultaneously, and analyse how they interact. We
find that that these properties are at odds with each other, and
it is necessary to make trade-offs between them. We show a
theoretical result to demonstrate this, which talks about the
clash between the requirements of differential privacy, accu-
racy, and fairness in learning algorithms. It is an impossibility
theorem which states that even in a very simple binary classi-
fication setting, no learning algorithm that is ε-differentially
private (for any ε < ∞), and approximately fair (i.e., the
algorithm is guaranteed to output an approximately fair clas-
sifier1), can have non-trivial accuracy.

2 Related Work
The work that is most relevant to ours is that of Cummings
et al. [2019]. Cummings et al. [2019] consider the trade-offs
when considering learning algorithms that satisfy differential
privacy and one particular notion of fairness (equal oppor-
tunity), and one of their results is a weaker version of ours.
In particular, they claim that there is no learning algorithm
that achieves ε-differential privacy, satisfies equal opportu-
nity, and has accuracy better than a constant classifier. How-
ever, to the best of our understanding, we believe that there
is a gap in their argument (see Section 4 where we describe
what it is), and so their proof idea does not go through. So,
our contribution here can be summarized as correcting their
proof and also generalizing their result, by showing that such
an impossibility holds with respect to many different notions
of (even approximate) fairness.

Apart from the work of Cummings et al. [2019], another
important paper that was a motivation for pursuing this line
of work was that of Pujol et al. [2020]. Pujol et al. [2020]
empirically show how there might be privacy-fairness trade-
offs involved in certain settings. In particular, they con-
sider three resource allocation settings and use census data to
which noise has been added to demonstrate how adding noise
to achieve differential privacy could disproportionately affect
some groups over others in the settings that they consider. Be-
sides the paper mentioned above, there is also work by Dwork

1An approximately fair classifier refers to classifiers that satisfy
even relaxed or approximate versions of common notions of fairness
(such as error rates, or false positive/negative rates, being approxi-
mately equal across different groups). Proving an impossibility for
such relaxations makes our result stronger.



and Mulligan [2013], and Ekstrand et al. [2018], where they
consider the issues of privacy and fairness together. They in-
tuitively discuss about why there may be trade-offs involved
in deploying algorithms in real life scenarios, and advocate
for the issues of privacy and fairness to be studied together.
Bagdasaryan et al. [2019] empirically demonstrate that in
neural networks trained using differentially private stochas-
tic gradient descent (DP-SGD), accuracy of DP models drops
much more for the underrepresented classes. Our work can
be considered as essentially lending some theoretical support
to the observations in the above works, as we prove how even
in very simple settings it may be impossible to achieve fair-
ness and privacy together, while maintaining accuracy. There
is also work by Jagielski et al. [2019], where they shows two
algorithms that satisfy (ε, δ)-differential privacy and a partic-
ular notion of fairness (equalized odds). However, they con-
sider the relaxed notion of approximate differential privacy
((ε, δ)-DP, δ > 0), while we consider the stricter notion of
pure differential privacy ((ε, 0)-DP) throughout.

3 Trade-Offs between Fairness and Privacy
The result essentially shows that even in a simple binary clas-
sification setting, there is no learning algorithm that is fair
(even approximately), and differentially private, while main-
taining good accuracy. Hence, we see that, the properties of
fairness, differential privacy, and accuracy, can be at odds
with each other and it may not possible to satisfy the three
of them simultaneously.

3.1 Setup
Throughout, we use X to denote the domain set. There is a
probability distributionD over X . The domain set consists of
elements of the form z = (x, a, y), where x refers to the el-
ement’s features (e.g., this could be income, age, etc.), a is a
protected (binary) attribute (we have a protected/minority and
a majority group, and use a = 0 to denote the minority class
that we wish to protect from discrimination). y is a binary la-
bel, that is what we want to predict. Additionally, throughout,
we assume that y = 0 denotes the bad label—meaning, for
instance, in the context of, say, giving loans, this means that
the person will not return the loan.

3.2 Privacy
The notion of privacy we consider is called differential pri-
vacy. Differential privacy aims to protect the privacy of each
individual in a database. In the case of learning algorithms,
the database is the training set.

Differential Privacy
Differential privacy protects the privacy of an individual by
ensuring that an algorithm will generate similar outputs on
neighboring databases. It roughly protects the privacy of an
individual in the database in the following way; changing an
individual’s entry, or deleting or adding it, will lead to what
we call a neighboring database, and because the algorithm
will generate similar outputs on neighboring databases, an
observer seeing its output essentially cannot tell if a partic-
ular individual’s information was used in the computation, or
what that information is.

Definition ((ε, δ)-differential privacy [Dwork et al., 2006]).
For any ε, δ ≥ 0, a randomized algorithm A is said to
be (ε, δ)-differentially private if for all pairs of neighboring
databases D, D′ and for all sets S ∈ Range(A) of outputs,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S] + δ.

Remark. Although we have defined differential privacy in
its full generality, note that we will be talking about (ε, 0)-
differential privacy throughout.

Database
We mention two different notions of a database.

1. The first one, is a finite sample, with entries drawn i.i.d.
from the distribution D over the domain X .

2. The second notion is to consider the whole distribution
D as a database.

The first notion is standard in the privacy literature, where
databases are viewed as a finite collection of data points from
n individuals. The second notion is standard for statistical
notions of fairness, where the goal is to ensure fairness over a
large population. Notion 2 can simply be considered a gener-
alization of Notion 1. As in Cummings et al. [2019], we will
be using the second notion, but the same result and proof idea
also work for the first notion.

Neighbouring Databases
Given our definition of a database, it now remains to be de-
fined what we mean by neighboring databases. Here we use
the notion of σ-closeness, which is also used by Cummings
et al. [2019].

Definition (σ-closeness [McGregor et al., 2010]). Distribu-
tions (i.e., databases) D and D′ are said be σ-close if

1

2

∑
z∈X
|D(z)−D′(z)| ≤ σ.

As in Cummings et al. [2019], we calculate the distance
between two distributions (databases) by the above expres-
sion (this is also known as total variation distance), and if the
distance is lesser than σ, for some pre-specified value of σ,
then the distributions are said to be neighboring.

3.3 Fairness
What notion of fairness do we use? Our results hold for pretty
much all the common notions proposed in popular literature
(for example: Demographic Parity, Equal Opportunity (used
in Cummings et al. [2019]), Equalised Odds, etc., see be-
low for definitions) [Dwork et al., 2012; Hardt et al., 2016;
Verma and Rubin, 2018]. Essentially, any reasonable notion
of fairness, that does not allow one group to be treated much
worse than the other. More importantly, our results hold for
even relaxed or approximate versions of these notions (This
means that, for example, instead of demanding equality in
false positive/negative rates for both groups, we require that
there should not be a high difference in these rates between
the two groups). Proving an impossibility for such relaxations
makes our result stronger.



Fairness definitions
Definition (Demographic parity). A binary classifier h satis-
fies demographic parity if with respect to random variables A
and Y

Pr
z∼D

[h(z) = 1|A = 1] = Pr
z∼D

[h(z) = 1|A = 0].

Definition (Equal opportunity [Hardt et al., 2016]). A binary
classifier h satisfies equal opportunity if with respect to ran-
dom variables A and Y

Pr
z∼D

[h(z) = 1|Y = 1, A = 1] = Pr
z∼D

[h(z) = 1|Y = 1, A = 0].

In words, h satisfies equal opportunity if it produces equal
true positive rates across the two groups.
Definition (Equalized odds [Hardt et al., 2016]). A binary
classifier h satisfies equalized odds if

• h has equal false positive rates across the two groups,
i.e., with respect to random variables A and Y

Pr
z∼D

[h(z) = 1|Y = 0, A = 1] = Pr
z∼D

[h(z) = 1|Y = 0, A = 0]

• h satisfies equal opportunity.

3.4 Result
Our main result is an incompatibility theorem showing how
differential privacy and fairness can be at odds with each
other when we consider a learning algorithm with non-trivial
accuracy. In particular, we consider a simple binary classifi-
cation setting where the learning algorithm is given full ac-
cess to the underlying distribution, and show that even un-
der this severe restriction2, any learning algorithm that is
(ε, 0)-differentially private, and even approximately fair, can-
not achieve accuracy better than that of a constant classifier
(that outputs the same label for every input).
Theorem 1. If a learning algorithm A is (ε, 0)-differentially
private and is guaranteed to output an approximately fair
classifier, then A is constrained to output a constant clas-
sifier, i.e., A : D̃ → ∆(H), where D̃ denotes the set of all
distributions, and

H = {h : X → {0, 1} | h is a constant function} .

We start with an informal overview of the proof. The main
idea in the proof is to first observe that, due to differential
privacy constraints, if there is a classifier that is output with
positive probability by A on a distribution D1 ∈ D̃, then A
has to output this classifier with positive probability on any
other distribution D′1 ∈ D̃. Now, what the claim above im-
plies is that, if algorithm A has to be (approximately) fair
as well, and it outputs classifier h on some input distribu-
tion, then h is always (approximately) fair, irrespective of the
underlying distribution. Now, once we have the observation
above, then it just remains to show that such classifiers—i.e.,

2The result also holds for the case where the algorithm has access
to a finite training set, and not the underlying distribution. Giving
the algorithm access to the underlying distribution is an easier task
(equivalent to providing infinite training samples). Proving an im-
possibility for this case makes our result stronger.

ones that are (approximately) fair with respect to any underly-
ing distribution—belong to a very restricted set, namelyH as
defined in the theorem. Below, we present a formal argument
by first proving the following claim.
Claim 2. Let A be a learning algorithm that is (ε, 0)-
differentially private. Then, ∀D1,D′1 ∈ D̃, and for all classi-
fiers h,

Pr[A(D1) = h] > 0 =⇒ Pr[A(D′1) = h] > 0.

Proof. Consider an arbitrary distribution D1 ∈ D̃ and a clas-
sifier h such that Pr[A(D1) = h] > 0. Next, consider
any arbitrary distribution D′1 ∈ D̃. We need to show that
Pr[A(D′1) = h] > 0.

To see this, first let us consider, for any i ∈ [n] and
η > 0, two η-close distributions Di and Di+1 (i.e., they are
neighboring databases). Since A is ε-differentially private, if
Pr[A(Di) = h] > 0, then we have that Pr[A(Di+1) = h] >
0, for if otherwise, then we have,

0 < Pr[A(Di) = h] ≤ exp(ε) Pr[A(Di+1) = h] = 0,

which is a contradiction.
Now, given the observation above, observe that, for any

η > 0, one can construct a (finite) series of distributions
D2, · · · ,Dn such that ∀i ∈ [n],Di andDi+1 are η-close (i.e.,
they are neighboring databases) and whereDn+1 = D′1. This
in turn implies that we have,

Pr[A(D1) = h] > 0 =⇒ Pr[A(D2) = h] > 0

=⇒ Pr[A(D3) = h] > 0

...
=⇒ Pr[A(Dn+1) = h] > 0,

where all the implications above are obtained by using the
argument made above that for two neighboring databases Di

and Di+1, Pr[A(Di) = h] > 0 =⇒ Pr[A(Di+1) = h] > 0.
This in turn proves our claim.

Proof of Theorem 1. From Claim 2 we know that if a learning
algorithm A is (ε, 0)-differentially private and is guaranteed
to output a fair classifier, then for all fair classifiers h and
∀D1,D′1 ∈ D̃, Pr[A(D1) = h] > 0 =⇒ Pr[A(D′1) = h] >
0. In other words, what this implies is that, for a fair learning
algorithm A, any fair classifier h that is output by A is fair
with respect to any distribution in D̃. Below, we show how
any h satisfying the property mentioned above should belong
toH, whereH is as defined in the statement of the theorem.

To do this, consider for the sake of contradiction any h /∈
H. This implies that, there exist points p1 = (x1, 0, y1) and
p2 = (x2, 1, y2) classified differently by h (Because h is not
constant, we can find two points a, b ∈ X such that h(a) 6=
h(b). If they are in different groups, we are done. If they are
in the same group, then choose any c ∈ X in the other group.
It will hold that either h(c) 6= h(a), or h(c) 6= h(b), and we
are done). Then, either of the following two cases holds:

1. h(p1) = 0 and h(p2) = 1, or
2. h(p1) = 1 and h(p2) = 0.



Now, if this is the case, then we will construct a distribution
on which h is unfair. We construct a distribution for Case
1. To construct such a distribution, let us first consider the
following points.

q1 = (x1, 0, 1) q2 = (x2, 1, 0)

Next, let us define the following distribution D′.

D′(q1) =
1

2
D′(q2) =

1

2

Note that h(q1) = 0 and h(q2) = 1. However, if this is
the case, then note that by any reasonable notion of fairness,
h is unfair to group 0 as compared to group 1, since group
0 always has true label 1 but is always labeled 0, whereas
group 1 always has true label 0 but is always labeled 1. For
example, note that demographic parity is clearly not satisfied,
even approximately.

Note that in the above distribution, some common fairness
notions such as equal opportunity are not defined (because
false positive rate for group 0 is undefined). To construct a
distribution on which a broader class of fairness notions are
defined, let us first consider the following points.

q1 = (x1, 0, 1) q2 = (x1, 0, 0)

q3 = (x2, 1, 0) q4 = (x2, 1, 1)

Next, for some small ε > 0, let us define the following
distribution D′.

D′(q1) =
1

2
− ε D′(q2) = ε

D′(q3) =
1

2
− ε D′(q4) = ε

Since h depends only on the observable attributes, note that
h(q1) = h(q2) = 0 and h(q3) = h(q4) = 1. However, if
this is the case, then note that by any reasonable notion of
fairness, h is unfair to group 0 as compared to group 1, since
most of their points actually have true label 1 but they are all
labeled 0, whereas most of the points of group 1 have true
label 0 but they are all labeled 1. For example, note that equal
opportunity and equalised odds are clearly not satisfied, even
approximately.

We omit the construction for Case 2. Essentially the same
idea as Case 1 can be used for Case 2.

4 Gap in Proof in Previous Work
As mentioned previously, our result here is a stronger version
to the one in Cummings et al. [2019], but we believe that their
proof has a gap. Below we describe what this gap is.

Error in Theorem 1. On a high level, what their proof tries to
do is, given a distribution D and a classifier h that satisfies
equal opportunity (and is output with non-zero probability)
for this distribution, to construct a neighboring distribution
D′ on which h does not satisfy equal opportunity. Now, h is
output with non-zero probability on D, and because of differ-
ential privacy constraints, it is output with non-zero probabil-
ity on D′ as well. This would imply the algorithm is not fair,
because on input distributionD′, it outputs an unfair classifier

(h) with non-zero probability. However, there is error in this
construction, and h does indeed satisfy fairness (equal oppor-
tunity) on the distribution D′, contrary to what is claimed.
The equal opportunity notion of fairness requires that a clas-
sifier h satisfies (with respect to group A and label Y on dis-
tribution D′)
Pr

z∼D′
[h(z) = 1|Y = 1, A = 1] = Pr

z∼D′
[h(z) = 1|Y = 1, A = 0].

It is therefore crucial for their proof to show inequality of
group-conditional true positive classification rates for classi-
fier h on the distribution D′, denoted by

γya(h) = Pr
D′

[h = 1|Y = y,A = a].

I.e., they require that

γD10
′
6= γD11

′
.

which does not hold. The claim is that

γD10
′

=
1

4
− τ 6= 1

4
+ τ = γD11

′
.

However, it is easy to see that

γD10
′

= 1 = γD11
′
.

and therefore h does indeed satisfy equal opportunity on the
distribution D′, contrary to what is claimed. The error seems
to stem from an incorrect usage of conditional probability ar-
guments, and unfortunately this error does not seem fixable
within the same proof idea. In any case, we do think that the
statement is correct, and we prove a stronger claim.

5 Conclusion and Future Work
Through this work, we see that in machine learning based de-
cision systems, the desiderata of fairness, and privacy may
be at odds with each other and it is often necessary to make
trade-offs between them, if we want to maintain accuracy. We
prove a theoretical result to demonstrate this, an incompatibil-
ity theorem showing a setting where pure differential privacy
and (even relaxed notions of) fairness are at odds with each
other when we want a learning algorithm with non-trivial ac-
curacy. In particular, we consider the task of learning a clas-
sifier for a simple binary classification setting and show that
any learning algorithm that is (ε, 0)-differentially private, and
even approximately fair, cannot achieve accuracy better than
that of a constant classifier.

The current statement allows the learning algorithm to be
faced with any underlying distribution (without any restric-
tions). But in reality, it’s probably more likely that the set
of distributions the learning algorithm will encounter follow
some niceness properties. So, if we restrict the distributions
by these niceness properties, can we prove something simi-
lar? Additionally, in the result, we require each output clas-
sifier to be fair. An algorithm that generates a fair classifier
with high probability could also be considered as fair, and
such relaxations could definitely be looked at.
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