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Abstract

In this work, we look at cases where we want a clas-
sifier to be both fair and interpretable, and find that
it is necessary to make trade-offs between these two
properties. We have theoretical results to demon-
strate this tension between the two requirements.
More specifically, we consider a formal framework
to build simple classifiers as a means to attain in-
terpretability, and show that simple classifiers are
strictly improvable, in the sense that every simple
classifier can be replaced by a more complex clas-
sifier that strictly improves both fairness and accu-
racy.

1 Introduction

Machine learning based decision systems have become com-
monplace, and are increasingly being used to make consequn-
tial decisions. One would like these systems to be fair, and
not discriminate against someone just because of their mem-
bership in a minority/protected group (which could be a par-
ticular race, gender, etc.). We would also like the system to
be interpretable, what that intuitively means is that we would
like to be able to understand how it works and convincingly
explain any decisions it might make.

Creating models that are intuitively simple to humans is a
natural strategy to increase their interpretablilty. For exam-
ple, one could avoid using complex models such as deep neu-
ral networks, and instead use simple models such as linear
classifiers. Another way to build simple classifiers is to re-
duce the number of features that are involved in the decision
making process, by choosing a small number of the most in-
formative features, or deleting unfair features [Grgi¢-Hlaca et
al., 2018]. We consider the formal framework to model the
construction of simple classifiers proposed in Kleinberg and
Mullainathan [2019], which captures some commonly used
methods of building interpretable models. We discuss the in-
teraction between the desiderata of simplicity (interpretabil-
ity), fairness and accuracy of binary classifiers in this frame-
work.

Given a set of features, we have an optimal classifier (i.e.,
the most accurate classifier that can be built from the given
features). One may wish to simplify the optimal classifier to
increase interpretability, or to even increase fairness in some

cases. Simpler models can be easier to audit, and we can
possibly identify sources of unfairness and correct them with
more ease in them [Doshi-Velez and Kim, 2017]. Deleting
features that can be potentially viewed as unfair, has also been
adopted in practice, for example, in the well known “ban the
box” scenario, where the check box in hiring applications that
asks if applicants have a criminal record, is removed [Doleac
and Hansen, 2016].

In contrast, this work discusses the negative effects of
building simple classifiers on their fairness. More specifi-
cally, we show that every simple classifier can be improved;
i.e., replaced by a more complex classifier that strictly in-
creases both fairness and accuracy with respect to the sim-
ple classifier. It is quite expected that using a simple model
would result in a loss in accuracy, because imposing simplic-
ity requirements on a classifier reduces its expressive power.
The surprising finding here is that simplification leads to a
loss in fairness as well, i.e., we can always find a more com-
plex classifier that is more fair, in fact, we can always find a
more complex classifier that is simultaneously more fair and
accurate than the simple classifier. Hence, we see that that the
properties of fairness and accuracy clash with interpretability
(or simplicity).

2 Related Work

Although the ethical issues concerning algorithms that we
discuss in this work have been considered widely in the now
ubiquitous literature on model interpretability and algorith-
mic fairness, they have mostly been considered in isolation.
In particular, the literature on algorithmic fairness discusses
how to handle issues such as bias and discrimination [Dwork
etal.,2012; Kleinberg et al., 2017; Feldman et al., 2015], and
the literature on model interpretability addresses the grow-
ing need for transparent models [Doshi-Velez and Kim, 2017;
Rudin, 2019; Lipton, 2018].

Not much previous work has looked at cases where one
would want to satisfy multiple of these properties simultane-
ously, or analysed how these properties interact. Previously,
Doshi-Velez and Kim [2017] argued that increasing a model’s
interpretability makes the model easier to analyse, and there-
fore assists in (a) deciding whether the model is fair and (b)
modifying the model to ensure that it is. In contrast to their
work, our first main result captures the fact that the inter-
pretability of a model could be at odds with the fairness of



the model.

Our main result is similar in spirit to the main statement of
Kleinberg and Mullainathan [2019]. However, our setup has
some key differences and enjoys multiple advantages. We re-
move a restrictive assumption they make on the data distribu-
tion, and our notion of fairness is different. We will compare
our work to Kleinberg and Mullainathan [2019] in greater de-
tail later.

3 Formalising the Framework

We denote the domain set by X'. There is an underlying distri-
bution D over X. We assume the existence of a Ground Truth
function, that assigns a label to each point in the domain set,
that is,

G:X—{0,1}.

For example, in the case where a bank needs to classify loan
applicants, a person in the domain set is assigned the label 1
if they would return the loan, and 0 otherwise. In general, we
refer to an instance labeled 1 as good, and bad otherwise.!

Features FEach instance in A" is represented by the set of
features F = {f1,..., fx}. For example, in the bank loans
case, the features could be things like credit score, income,
and so on. Each instance also belongs to one of two groups
- Aor D. A stands for the advantaged group, whereas D
stands for the disadvantaged group. D can be thought of as
the minority group that we wish to protect from discrimina-
tion. The group membership feature f,, : X — {A,D}
maps an instance to their group. For simplicity, we assume
that each f; : X — {0, 1} is a binary feature.?

Task Given an unlabeled set of applicants generated by the
underlying distribution, we want to build a classifier to admit
a fixed fraction r (known as admission rate) of them, such
that we are as accurate as possible (i.e., admit as many good
applicants as possible).

Partitions and Cells We can partition the domain set X
into different parts, and we call each part a cell. A natural
way to create cells is based on their feature vectors. That is,
two instances are part of the same cell if and only if they have
the same feature vector representation.

Recall, we are given access to a set of features F =
{f1,.-, fx}- We also had the group membership feature f,,
and if we append that to the feature set 7, we denote the
resultant feature set by F'. The partition induced by F is
denoted by f, and we denote the cells of f by Cy,...,C,,
(where n. = 2%, because each feature is binary). The partition
induced by F is denoted by f’, and consists of 251 cells, as
there are k+ 1 binary features. The cells in f’ are obtained by
splitting each cell in f into two parts, according to the group

'Our results and proofs also go through for the case where the
ground truth function G is non-deterministic, that is, instead of being
labeled O or 1, a particular instance might be labeled O with proba-
bility 0.6, and 1 with probability 0.4. However, for simplicity, we
assume that the ground truth function is deterministic. If we allow
G to be non-deterministic, the underlying distribution D would be
over X' x {0, 1}, not X.

“However, the results, and pretty much the same proofs also hold
for the case when each feature can take finitely many values.

membership feature f,,. For e.g., C; is split into C{* and CP,
which represent the advantaged and disadvantaged people in
the cell C; respectively.

Score Function We say that the probability of a random
instance sampled according to D being good (given that it
lies in some cell C) is the score of C. We denoted the score of
Cby S(C),ie.,
S(C)= Pr|G(z)=1]xz (]
xz~D

By score of an instance x € X', we mean the score of the cell
it belongs to in the partition f’. Given the feature set, and the
fact that we only have access to the features of any instance,
the score of an instance is the most accurate estimate we can
have of the probability of the instance being good.

4 Classifiers

A classifier assigns every point in the domain set a label from
{0,1}. Because each point in the domain set is represented
by its feature vector, the classifier is essentially a function
from the space of all feature vectors to the label set., i.e.,
from {0, 1}**+% — {0,1}. A given partition h of the domain
set and admission rate r induces a threshold classifier that we
denote by h... The classifier h,. sorts the cells of & in descend-
ing order of their scores (after merging together cells with the
same score). We then admit applicants in this order until we
admit the desired fraction . We use the terms classifier and
partition interchangeably.

Recall that we had discussed the partition f’ above, which
is the partition induced by all the features we have. Given
the feature set we have, the most accurate classifier we can
construct is the one induced by the partition f”.

4.1 Formal Description of Classifier

A given partition h of the domain set and admission rate r
induces a threshold classifier that we denote by h,. Con-
sider an arbitrary partition & which partitions X into the cells

1,Co, .. Cl, ..., Ch. We sort the cells of h in descend-
ing order of their scores. Without loss of generality assume
that h partitions X into cells C{*,C%, ..., C} with decreas-
ing (not necessarily strict) order of scores. We merge cells
with the same scores to form a new partition h* with cells
Ci,Cs,...,C}, in strictly decreasing order of scores. Now,
start admitting applicants in order as follows until you admit
a fraction r of them. Let r; be the fraction of the first j cells
of h* in the order they are represented. If j(r) is the unique
index j such that r;_; < r < r;, then the instances admitted
consist of all the applicants in the cells C},C5,. .., }k(r)q’

together with a subset of C7,, of fraction (r — r;_1). The
instances in C]’.*(T) that have to be admitted will be picked ran-
domly.

4.2 Modeling Simple Classifiers

We use the framework introduced in Kleinberg and Mul-
lainathan [2019] to model the construction of simple classi-
fiers. Two particular approaches to build simple classifiers
that this framework captures are (i) shallow decision trees,
and (ii) using a small number of informative features (feature



selection). Both these approaches follow a common princi-
ple: they simplify the underlying model by combining distin-
guishable instances (applicants with different feature vector
representations) together into larger sets and making a com-
mon decision at the level of each set. Previously, the instances
were in different sets, and were therefore potentially treated
differently. What that means in our framework, is that we
would simplify f’ (or in general, any partition) by combining
multiple cells of it together into one larger cell, to result in a
simpler partition, with fewer cells. We define a simplification
formally below.

Definition (Simplification). A partition w of a set X is a sim-

negatives of the disadvantaged group, and false positives of
the advantaged group) with a high weight. We also penalise
the decisions that unfairly hurt the advantaged group (false
negatives of the advantaged group, and false positives of the
disadvantaged group), but with a lower weight than the de-
cisions that hurt the disavantaged group. Our fairness objec-
tive function penalises F'P4 (False Positives for group A),
FNp (False Negatives for group D), F'Pp (False Positives
for group D), and F'N,4 (False Negatives for group A), and
aims to minimise a weighted sum of them.

FPa(h,) = E(Fraction of bad instances in A that h,. accepts)

plification of partition v of X’ if every cell of v is a subset of £V p(hy) = E(Fraction of good instances in D that . rejects)
some cell of w, and w # v. F Pp(h,) = E(Fraction of bad instances in D that h,. accepts)
Definition (Non-trivial simplification). A simplification w of ~ F'Na(h,) = E(Fraction of good instances in A that h,. rejects)

f' is non-trivial if it contains at least one cell C such that C
contains at least two cells of f’ with different scores. If a sim-
plification of f’ only combines together cells with the same
scores, the partition-induced classifier remains unchanged,
and hence, such a simplification is not very meaningful.

Definition (Non-trivial cell). We say that such a cell C as
above is a non-trivial cell.

Structured Simplifications

The approaches to building simple classifiers that the frame-
work captures, which are (i) shallow decision trees, and (ii)
feature selection, do not combine cells at random, but they do
it in a constrained way. For example, f is the simplification
of f’ associated with deleting the group membership feature
fm. Deleting a feature (a way to implement feature selection)
is a specific form of simplification that halves the number of
cells. We define two other forms of structured simplification
in this work, namely, group agnostic simplifications (defined
below) and graded simplifications (defined later).

Definition (Group Agnostic Simplification). A simplifica-
tion of f’ such that instances differing only in the group
membership feature are mapped to the same cell. This ba-
sically means that as a simplification step, the classifier is
constrained at the very least to completely ignore/delete the
group membership feature. There may or may not be further
simplification steps on top of this.

4.3 Evaluating Classifiers

Fairness Most notions of fairness just tell us when a clas-
sifier is unfair, but do not quantify the amount of unfairness.
The few notions that have been proposed previously to quan-
tify unfairness have essentially been of the following form:
Unfairness = |[R(A) — R(D)|, which is the absolute value in
the difference of some quantity R (such as error rate, or false
positive/negative rates), between the advantaged group A and
disadvantaged group D. Such notions support the viewpoint
that false positive rates, say 1 and 0 for A and D respectively
is as unfair as false positive rates 0 and 1 for A and D re-
spectively. We take a different viewpoint, and believe that the
former should be considered more unfair than the latter.

We propose a notion more in line with affirmative action,
that actively supports the disadvantaged group. We penalise
the decisions that unfairly hurt the disadvantaged group (false

Unfairness(h,) = E[a(FNp(h,)) + B(FPa(h,))
+Y(F'Na(hy)) + 6(FPp(hr))]

where v < a, and § < 5.
Fairness(h,.) = —Unfairness(h,.)

When v = a = § = (3, optimising for fairness is the
same as optimising for accuracy. On the other extreme, When
v = 0, and § = 0, the notion of fairness basically only pe-
nalises the decisions that hurt the disadvantaged group, and
hence can be seen as an extreme case of affirmative action.
Between these two extremes, the fairness notion aims to bal-
ance accuracy with affirmative action, and one could tweak
the weights as per the given situation.

Accuracy

E(Fraction of good instances h,. accepts)

ceuracy (hr) Total fraction of instances h, accepts (i.e., 1)

Comparing Two Classifiers

Consider two partitions of X', say h and g. We say that a par-
tition h improves on partition g in criteria Q (e.g., accuracy)
if for every r € [0, 1], Q(h,) is at least Q(g,-). We say that a
partition h strictly improves on partition g in criteria Q (e.g.,
accuracy) if for every r € [0, 1], Q(h,) is at least Q(g, ), and
there exists an v’ € [0,1] such that Q(h,) is strictly more
than Q(g, ).

S Result
5.1 Group Agnostic Case

We first consider the case where we restrict simplifications to
group agnostic ones. We informally explain the result of this
section. Recall that the classifier resulting from partition f’
is the most accurate classifier we can build with the features
we have. If we choose to use a simpler classifier than f’, say
w, it might lead to an increase in interpretability, or fairness,
but we lose accuracy. That might have been a good trade-
off, but we show that the simple classifier w is not optimal if
we ignore the requirement of interpretability, as there exists



a partition h (achievable by the features we have)?® that is si-
multaneously more fair, and accurate, than w. Therefore, we
would strictly prefer h over w, if we ignore interpretability re-
quirements, and therefore we see that interpretability clashes
with the desiderata of fairness, and accuracy.

Theorem 1. For every non-trivial group-agnostic simplifica-
tion of f', say w, there exists a classifier h that simultaneously
strictly improves both accuracy and fairness over w.

Assumptions on the Data Distribution
Before moving on to the proof, we list the assumptions we
use (also used by Kleinberg and Mullainathan [2019]).

1. Equality assumption: For every cell C; € f, if we split
it by group membership, both resultant cells C* and CP
have the same score. This intuitively means that if we
have enough informative features about a person, their
membership in a protected group does not affect their
performance.

2. Denseness assumption: We denote the cells of f’ by
Ci,...,Ch,. C* denotes the instances of cell C that are
advantaged. Similarly, C” denotes the disadvantaged in-
stances of cell C. For every cell C; € f, if we split it by
group membership, both resultant cells CZA and CP have
positive measure (The measure of a cell C, denoted by
u(C), is the mass of the probability distribution D in
cell C). This intuitively means that there exist people in
both groups A and D exhibiting every feature vector.

3. Genericity assumption: Let R, T C f’ be two distinct
sets of cells such that if R = C then T # CP. We then
assume that S(R) # S(T) (For a set of cells R C f,
use S(R) to denote the weighted average value of S in
the cells of R).

Remark. This in particular implies that the cells of f
can be arranged in strictly descending order of scores.
Without loss of generality, we assume that S(C;) >
S(C) > -+ > S8(Cp).

Proof of Theorem 1. Consider non-trivial group-agnostic
simplification w of f’. It partitions X into the cells

A A A A A A
C17C2>"" 77Cjacj+17"'ct7"'acd

with descending order of scores. Take a non trivial cell of
w, say C;*. The non trivial cell C;* consists of two or more
cells of f with different scores. Say C;* is the union of
Ca,Cp,...,C, € f. Let the cell of f in C}* with the high-
est score be Cp.

Construct h as follows: Remove ¢ > 0 measure of X’ from
CP to create a separate cell C’. This is the new partition h.
Denote the remainder of C;* by C”. Observe that S(C") >
S(C) > S(C"). Take e small enough to not change order

If we do not require partition h to be achievable with
the features we have, it is trivial to find an h that strictly
improves in fairness and accuracy over any w (where w is
a non-trivial simplification of f’). For example, the fol-
lowing partition would work: h = Cf,C%,C4,CL, where
C{ = Good instances in D,C5 = Good instancesin A,C§ =
Bad instances in D, C; = Bad instances in A. Here we ensure to not
merge any cells in A while admitting instances.

of C” in the partition w. It should be in the same position
as C* was before. (we can do this because of the genericity
assumption) The only change in the order is that C’ jumps to
some position ahead of C”. The new partition h is

A A A / A A 1 A A
Clcha"'7ijca j4+1 0 t—lvc 7Ct+1"'7cd
with descending order of scores.

Remark. Removing € > 0 measure of a cell to create a sepa-
rate new cell can be viewed as randomising over instances in
that cell. Each instance goes to the new cell with probability
€, and stays in the old cell with probability 1 — e.

We can show that for all rates r, the fairness, and accuracy
of h is at least as good as w, and for at least one value of r,
strictly better in both criteria. Let r; be the fraction of the first
7 cells of a partition in the order they are represented.

Case 1
r>riorr <ryl

We note that in h, the measure of all cells uptil C” is r;.
The classifiers resulting from w and A with admission rate r
as above classify all cells the same way. Therefore, h, has
the same accuracy, and fairness as w,-.

Case 2
ri+p(C) >r>r;:

Both h, and w, classify all instances of C7',...C} as 1.
The admission rule %, classifies instances of C,,---C/*4
as 0 and some mass ¢ = r — r; of C' as 1, while the ad-
mission rule w, classifies some mass j of CjAH, ~-Cl as 1,
and the remaining as 0 (we start by classifying instances from
from C]-AJr1 as 1, if ,u(CJ/-\H) < p, then we move on to Cjyo,
and so on). Since the score of C’ is greater than the score
of each cell C,,---C", the mass y of C’ that h,. classifies
as 1 has a higher measure of expected true 1’s than the mass
w of CJAH, ---C} that w, classifies as 1. Therefore, h,. is in
expectation more accurate than w,.

The mass p of C’ that h, classifies as 1 has a higher
measure of disadvantaged instances than the mass p of
Ciyy,---C) that w, classifies as 1 because C’ only consists
of disadvantaged instances, while each cell in CJ-AH, - CP
consists of both disadvantaged and advantaged instances (be-
cause of the denseness assumption). It is easy to see that
h,- on expectation has lower F'P4 and F'Np values than w,.
The increase in F'Pp and F'N 4 values is not more than the
amount of decrease in F'P4 and F'Np values respectively.
Hence, h, has higher fairness than w,..

Case 3
re >1r >+ p(C):

Both A, and w,. classify all instances of C', . . . CjA as 1 and
all instances of C{Y, 1, ...C,} as 0. h, classifies all instances of
C’ as 1, while w, classifies some mass p of them as 0 and
instead classifies some mass y from C7, ;,...C" with score
lower than that of C’ as 1. This is where the two classifiers dif-
fer. Cells C J-AH, ...C" have a lower score and lesser propor-
tion of disadvantaged instances than C’. Reasoning similarly
as Case 2, we observe that w, is less fair, and less accurate
than h,..

O



5.2 Differences with Respect to Previous Work

As mentioned before, our setup enjoys multiple advantages
over Kleinberg and Mullainathan [2019].

1. The following assumption on the data distribution be-
low, which is quite restrictive, is used by Kleinberg and
Mullainathan [2019], but we do not use it for our results.

Disadvantage assumption: Given cells C;,C; € f such
that S(C;) < S(C;), then

(ORI
u(cP) = u(epy

This condition intuitively means that for every two fea-
ture vectors a and b such that instances having feature
vector representation a have a higher chance of success
than instances having feature vector representation b, in-
stances having feature vector representation a have a
higher chance of belonging to the advantaged group than
instances having feature vector representation b.

=

2. They use the notion of equity (defined below) to quan-
tify the fairness of a classifier, which essentially involves
maximizing the number of minority group applicants the
classifier labels positively.

_ E(Fraction of instances in D that h, accepts)

Equity(h,)

Our notion of fairness is more aligned with accuracy. We
believe that a desirable property of any notion of fair-
ness is that a classifier that is perfectly accurate is also
perfectly fair, which is something our notion satisfies but
theirs does not. In addition, we also prove similar trade-
off results for equity (Theorems 2, 3, 4).

Adding Equity to Theorem 1

If we additionally consider the notion of equity in the scenario
of group agnostic simplifications as in Theorem 1, we get the
result below.

Theorem 2. For every non-trivial group-agnostic simplifica-
tion of f', say w, there exists a classifier h that simultaneously
strictly improves accuracy, fairness, and equity over w.

Proof. The same classifier h as constructed in the proof of
Theorem 1 works for this as well.
O

5.3 General Case

Now we move on from group-agnostic simplifications to a
more general notion of simplification, called graded simplifi-
cation. Note that in group-agnostic simplifications, we con-
strained the classifier to always ignore/delete the protected
group membership feature. Graded simplifications are more
general, and do not suffer from this constraint.

Definition (Graded-simplification). Consider cell partition
flof X @ Ci,Ch,...,Ch,. Consider simplification w of
f that partitions X into the cells C{*,C5,...,C],...,C)
with descending order of scores. Each cell C/* € w can
be written as C* = U;?:lC;j (i.e., the union of some

~ Total fraction of instances h,. accepts (i.e., )

cells C; ,C;,,...,C; € ['). We denote the set of indices
{i1,42...ix } corresponding to C/* as V (C]*).

A graded simplification w of f’ is one where each cell
C € w has the property that either V(CZ-/\A) C V(C{\D) or
vEerT) cvier).

Result

We first informally explain the result of this section. If we
use a simpler classifier than f’, say w, it might lead to an
increase in fairness, interpretability, or equity, but we lose ac-
curacy. We show that the simple classifier w is not optimal
if we ignore the requirement of interpretability, as there ex-
ists a partition A (achievable by the features we have) that
is simultaneously both more fair and accurate than w, while
also improving equity. Therefore, we would strictly prefer h
over w, if we ignore interpretability requirements, and there-
fore we see that interpretability clashes with the desiderata of
fairness, accuracy, and equity.

Remark. Unlike Theorem 2, the partition h does not guar-
antee an increase in equity. This makes sense, as we are now
considering a more general notion of simplification.

Theorem 3. For every non-trivial graded-simplification, say
w, there exists a partition h that simultaneously strictly im-
proves accuracy and fairness, while also improving equity,
with respect to w.

Proof. Consider simplification w. It partitions X into the
cells C{*,C4',...Cl, ..., C}, with descending order of scores.
Take a non trivial cell of w, say C;*. Say C; is the union of
CoCy... . Coc [

Casel: V(C)')cver)

There exists a cell C, such thatC, € f/,C, C C}*, such that
C, has the highest score amongst all cells C,,Cp,...,C, C
C{ and only consists of disadvantaged instances.

Construct h as follows: Remove ¢ > 0 mass of X’ from C,,
to create a separate cell C’. Denote the remainder of C;* by
C". Observe that S(C’) > S(C}*) > S(C”). Take e small
enough to not change order of C" in the partition w (we can
do this because of the genericity assumption). It should be in
the same position as C{* was before. The only change in the
order is that C’ jumps to some position ahead of C”.

The new partition h is

AN 7cj/,\’c”ch+17...cghc’/’cﬁrl... ,Ch
with descending order of scores.

Similar to the proof of Theorem 1, it is easy to check that
for all rates r, the fairness and accuracy of h is at least as
good as w, and for at least one value of r, strictly better in
both criteria. We also see that the equity does not reduce.

Case2: V(C))cver)

There exists a cell C, such thatC, € f’,C, C C{, such that
C, has the lowest score amongst all cells Cy, Cy, . .. ,C, C C7
and only consists of advantaged instances.

Construct h as follows: Remove € > 0 mass of X from
C, to create a separate cell C’. Denote the remainder of C;*
by C”. Observe that S(C’) < S(C}*) < S(C"). Take € > 0
small enough to not change order of C”’ in the partition w. It



should be in the same position as C;* was before (We can do
this because of the genericity assumption). The only change
in the order is that C’ jumps to some position behind C”.
The new partition h is
C{\,Cé\, o act/\—l?cﬂa z{\+1 o 7C1/;\7C/ac1/1\+1? o Cl/i\
with descending order of scores.

Similar to the proof of Theorem 1, it is easy to check that
for all rates r, the fairness and accuracy of h is at least as
good as w, and for at least one value of r, strictly better in
both criteria. We also see that the equity does not reduce.

O

Adding the Disadvantage Condition

In Theorem 3, if we make the disadvantage assumption, we
can find a partition & that simultaneously guarantees a strict
increase in equity as well. That is, we get the following state-
ment below.

Theorem 4. For every non-trivial graded-simplification, say
w, there exists a partition h that simultaneously strictly im-
proves accuracy, fairness, and equity with respect to w.

Proof. We omit the proof because essentially the same con-
struction as in the result of Kleinberg and Mullainathan
[2019] works for this result as well.

O

6 Conclusion and Future Work

Through this work, we see that in machine learning based de-
cision systems, the desiderata of fairness and interpretability
may be at odds with each other and it is often necessary to
make trade-offs between them, if we want to maintain accu-
racy. We prove theoretical results to demonstrate this. We
consider a formal framework to build simple classifiers as a
means to achieve interpretability, and show that if we restrict
our classifier to be simple within this framework, it can be
replaced by a more complex classifier that strictly improves
both fairness and accuracy. Therefore, we see that simplic-
ity/interpretability clashes with the properties of fairness and
accuracy.

There are many variants of the setup that we could investi-
gate for further work. While this result talks about the trade-
offs between fairness and simplicity, it is important to note
that not all forms of building simple classifiers (for e.g., lin-
ear classifiers) are captured by this framework. It would be
interesting to investigate the compatibility between fairness
and other notions of simplicity. Also, we deploy a particu-
lar objective function to quantify unfairness, and it might be
worth looking into the interplay between interpretability and
fairness for other fairness objectives.
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