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Abstract
Fair representation learning is an important task in1

many real-world domains, with the goal of finding a2

performant model that obeys fairness requirements.3

We present an adversarial representation learning4

algorithm that learns an informative representation5

while not exposing sensitive features. Our goal is6

to train an embedding such that it has good perfor-7

mance on a target task while not exposing sensitive8

information as measured by the performance of an9

optimally trained adversary. Our approach directly10

trains the embedding with these dual objectives in11

mind by implicitly differentiating through the opti-12

mal adversary’s training procedure. To this end, we13

derive implicit gradients of the optimal logistic re-14

gression parameters with respect to the input train-15

ing embeddings, and use the fully-trained logistic16

regression as an adversary. As a result, we are able17

to train a model without alternating min max op-18

timization, leading to better training stability and19

improved performance. Given the flexibility of our20

module for differentiable programming, we evalu-21

ate the impact of using implicit gradients in two ad-22

versarial fairness-centric formulations. We present23

quantitative results on the trade-offs of target and24

fairness tasks in several real-world domains.25

Introduction26

Deep learning models learn expressive data representations27

which make them applicable in many settings such as health-28

care, criminal justice, or financial support. However, when29

used in automatic processes, practitioners often want to en-30

sure that the model is performing fairly, with a variety of31

approaches enforcing different forms of fairness [Mehrabi32

et al., 2019]. One way to approach fairness is to ensure33

the learned latent representation doesn’t encode any sensi-34

tive information such as race or gender [Zemel et al., 2013].35

Several recent works learn fair representations through ad-36

versarial representation learning (ARL). In ARL approaches,37

an embedding model is trained such that a classifier has38

good performance on a target task, while also ensuring that39

an optimally trained adversary has poor performance ex-40

tracting the sensitive information. Many of the ARL ap-41

proaches use a multi-agent approach, alternating between 42

training the embedding and adversary [Xie et al., 2017; 43

Roy and Boddeti, 2019]. However, these alternating ARL 44

approaches disregard how changes in the embedding impact 45

the corresponding new optimized adversary. As a result, they 46

can suffer from training instability and suboptimality. 47

We propose an approach that directly trains the embedding 48

by treating the optimal adversary as a differentiable function 49

of the latent representation. We incorporate the adversarial 50

loss in the training, by considering adversary’s model pa- 51

rameters as an implicit differentiable function of the em- 52

bedding. We derive gradients for the optimal logistic regres- 53

sion solution with respect to the input embedding, thus en- 54

abling backpropagation from the adversary loss and the ap- 55

plication of the optimal adversary model to the embedding, 56

through the optimality conditions of the adversary, back to 57

the model parameters. 58

Our contributions are: 1) develop an end-to-end adversar- 59

ial learning methodology that does not alternate between the 60

target and sensitive attribute tasks, but instead optimizes both 61

jointly; 2) derive how to incorporate optimal logistic regres- 62

sion as a differentiable layer in predictive models, which is 63

interesting its own right; 3) show that our approaches often 64

provide better tradeoffs between target and sensitive accuracy 65

(as well as demographic parity) on diverse set of domains. 66

Problem Formulation 67

We consider that we are given data with features, target labels, 68

and sensitive labels
{

(x(i), t(i), s(i))
}n
i=1

with x(i) ∈ Rdf 69

being df − dimensional feature vectors, and target labels 70

t(i) ∈ Rdt and s(i) ∈ 2cs being one-hot sensitive labels 71

among cs sensitive classes. 72

The goal is to find a classifier parameterized by embedding 73

parameters θe, and target classifier θt such that the feature 74

extractor with weights W , trained against our embedding θe, 75

has poor performance. We can consider that the sensitive ad- 76

versary is a linear logistic function of the embedding as in 77

[Roy and Boddeti, 2019]. We consider the embedding func- 78

tion z(x(i); θe) ∈ Rde to return a representation of an exam- 79

ple in the latent space of dimensionality de. 80

We consider the 3-player game proposed in [Roy and Bod- 81

deti, 2019], where the adversary minimizes a loss Va(θe,W ), 82

and the target classifier and embedding minimize their own 83
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Figure 1: Fair representation learning model computation diagram.

loss, linearly weighting a penalty from the performance of84

the adversary Vp(θe,W ) and the predictive performance on85

the target data Vt(θe, θt). The adversarial penalty coefficient86

α is a tradeoff parameter that determines the weight on the87

adversarial penalty Vp. This setting is represented as the bi-88

level optimization problem:89

min
θe,θt,W∗

Vt(θe, θt) + αVp(θe,W
∗) (1a)

s.t. W ∗ = arg min
W

Va(θe,W ) (1b)

Here Equation 1a represents the overall loss, a linear com-90

bination of the target classification performance and the sen-91

sitive penalty. Similarly, Equation 1b ensures the adversarial92

weights W ∗ optimize the adversary’s objective Va.93

Considering that our setting consists of supervised learn-94

ing tasks, we consider the target and adversary clas-95

sifiers output predictions for targets t̂(z(x; θe); θt) and96

sensitive labels ŝ(z(x; θe);W ) respectively. We de-97

fine the target and adversary objective functions us-98

ing standard supervised losses, with target classifier loss99

Vt(θe, θt) = Lt(t, t̂(z(x; θe); θt)), and adversary classifier100

loss Va(θe,W ) = La(s, ŝ(z(x; θe);W )). We now define the101

target and adversary loss functions as well as the adversarial102

penalty to fully specify our problem.103

Target loss function: Vt104

This loss function represents the performance of the classi-105

fier on the target class. It is a supervised loss Vt(θe, θt) =106

Lt(t, t̂(z(x; θe); θt)) with Lt being a differentiable super-107

vised loss function such as cross-entropy loss.108

Adversary loss function: Va109

We consider the adversary to be solving a logistic regression110

problem, so our loss function on the adversary’s weights W111

is considered to be the logistic loss with L2 penalty. Given112

the one-hot encoded sensitive targets s, and softmax pre-113

dictions ŝ(z(x; θe);W )) = σ(WT z(i)(x; θe)), the softmax114

regression loss is Va(θe,W ) = La(s, ŝ(z(x; θe);W )) =115

−
∑n
i=1 s

(i)Tσ(WT z(i)(x; θe))+‖W‖22. Although the func-116

tions here are known to be differentiable, our approach will117

take gradients of the optimal weights W ∗ with respect to the118

input embeddings z(x; θe) to perform backpropagation.119

Adversarial penalty: Vp 120

Lastly, given our flexible formulation, we can consider both 121

formulations of adversarial representation learning (ARL) 122

presented in [Roy and Boddeti, 2019], one penalizing the em- 123

bedding based on the entropy of the optimal adversary (re- 124

ferred to as MaxEnt-ARL), and another based on adversary’s 125

classification performance (referred to as ML-ARL). 126

Optimizing the entropy considers that we want to max- 127

imize the entropy of the sensitive classifier’s predictions. 128

For simplicity, we can consider minimizing the cross- 129

entropy between the uniform distribution and the predictions 130

ŝ(x; θe,W
∗). Thus we can formulate entropy maximiza- 131

tion as minimizing Vp(θe,W ∗) = Lp(s, ŝ(z(x; θe);W
∗)) = 132

CE(1/cs, ŝ(z(x; θe);W
∗)), with CE(p, q) being the cross 133

entropy between p and q i.e. CE(p, q) = −
∑cs
i=1 p log2 q. 134

Note that in this setting, the adversary penalty disregards the 135

sensitive labels, but the sensitive labels will still be used in 136

the training of the adversary. 137

To encode ML-ARL in our formulation, we can consider 138

the adversary penalty Vp to be the negative of the classifica- 139

tion performance of the worst-case adversary. In this case 140

we would have Vp(θe,W
∗) = Lp(s, ŝ(z(x; θe);W

∗)) = 141

−CE(s, ŝ(z(x; θe);W
∗)), or the negative of the cross en- 142

tropy between the sensitive labels and the adversary’s pre- 143

dictions of the sensitive labels. 144

Evaluating the objective: Equation 1a 145

Given this problem formulation, we can clearly evaluate the 146

objective function we are trying to minimize given embed- 147

ding and target parameters θe, θt. 148

Examining the pipeline in algorithm 1 and visualized in 149

Figure 1, we can now begin to see that what is easily dif- 150

ferentiable in parameters θe, θt. Clearly step 1, 2, and 3 are 151

known differentiable functions of the weights so standard li- 152

braries will handle backpropagation. Furthermore, step 5 is 153

clearly a differentiable function of both the embedding and 154

the optimal logistic layer so a standard autograd library will 155

chain together gradients from softmax and product rule for 156

differentiating W ∗T z. In step 6, the adversarial penalty loss 157

is a standard cross entropy loss on the predictions. Lastly, 158

the returned loss is a simple linear combination. Therefore, 159

the only component that does not yet have readily-available 160

gradient computation is step 4. 161



Algorithm 1: Compute objective function
1 Embed z← z(x; θe)

2 Predict targets t̂← t̂(z; θt)

3 Compute Vt ← Lt(t, t̂)
4 Optimize Logistic Regression

W ∗ ← arg min
W
−

n∑
i=1

s(i)Tσ(WT z) + ‖W‖22

5 Predict sensitive ŝ← σ(W ∗T z)
6 Compute Vp ← Lp(s, ŝ)
7 Return Vt + αVp

Our approach derives gradients of the optimal solution to162

the logistic regression problem W ∗ with respect to the input163

feature embeddings z so that we can backpropagate from the164

loss function, through the logistic regression training, to the165

original embedding for training.166

Differentiating Through Adversary167

Optimization168

Given that the rest of the pipeline is specified for both for-169

ward and backward passes, here we investigate gradients for170

the remaining step: step 4 in algorithm 1. We derive gradients171

of the optimal logistic regression parameters W ∗ ∈ Rde×cs172

with respect to the input features z. Here the logistic regres-173

sion makes predictions for cs classes from de features. Given174

that the objective of the logistic regression is convex in it’s175

weights [Boyd and Vandenberghe, 2004], we know that the176

optimal solution is defined as the solution where the gradient177

of the objective function is 0. Thus we know that W ∗ must178

satisfy the constraints179

0 = ∇W
∣∣∣∣
W∗

(
−

n∑
i=1

sTi σ
(
WT z

)
+ ‖W‖22

)
.

We write the gradients of the logistic regression objective180

with respect to the model parameters evaluated at optimality:181

∇W
∣∣∣∣
W∗

(
−

n∑
i=1

sTi σ
(
WT z

)
+ ‖W‖22

)

=

n∑
i=1

(
σ
(
W ∗T z

)
− sTi

)
z + 2W ∗

Here we can see that the trained parameters W ∗ are an im-
plicitly defined function of the embedding z, namely those
which ensure the gradients are 0. Thus, to find gradients
of the optimal parameters W ∗ with respect to a single em-
bedding zi0 of example i0, we can relate changes in W ∗ to
changes in zi0 as those satisfying a set of equations. Specifi-
cally, we have that for each sensitive class k ∈ [cs],
n∑
i=1

[
cs∑
c=1

(δc,k − ŝ(i)c )s
(i)
k (dW ∗T

c z(i) +W ∗T
c dz(i))

]
z(i)+

+ (ŝ
(i0)
k − s(i0)k )dz(i0) = 0,

where δ is the Kronecker delta.182

Experiments 183

We train all methods with early stopping based on the valida- 184

tion loss of the encoder. We selected model hyperparameters 185

and architectures for the embedding model and target classi- 186

fier from [Roy and Boddeti, 2019]. 187

Methods 188

MLP is a fairness-unaware neural network classifier to mini- 189

mize a target loss without regard for the sensitive classifier. 190

CE-ARL [Xie et al., 2017], Ent-ARL [Roy and Boddeti, 191

2019] are standard alternating approaches. CE-ARL imposes 192

an adversarial penalty on the embedding of the negative cross 193

entropy loss. EntARL uses the prediction entropy as the ad- 194

versaryial loss. 195

CE-OptARL, Ent-OptARL are the corresponding vari- 196

ants of our method which penalize our embedding using the 197

negative of the adversary’s cross-entropy and the adversary’s 198

output entropy respectively. This method follows the same 199

mathematical program as [Xie et al., 2017] but fully opti- 200

mizes the adversary model instead of iteratively training the 201

embedding and the adversary. 202

Datasets 203

COMPAS [Angwin et al., 2016] has defendant data where 204

we aim to predict whether the person will recidivate within 205

2 years, being sensitive to race. Heritage Health data con- 206

tains features about 60,000 patients from insurance claims 207

and physician records. As in [Madras et al., 2018; Song et al., 208

2018], we consider the target task of predicting whether the 209

Charlson Index is nonzero being sensitive to age group (9 age 210

groups total). Adult is a UCI dataset [Frank and Asuncion, 211

2010] of 40,000 adults where the task is to predict whether 212

the income is above $50,000, while being sensitive to gender. 213

German is another UCI dataset [Frank and Asuncion, 2010] 214

of 1,000 people where the task is to predict low or high credit 215

score while being sensitive to gender. 216

Evaluation 217

Sensitive Accuracy evaluates the sensitive information in an 218

embedding. We train a logistic regression classifier to predict 219

the sensitive features from the embeddings of the training set 220

and evaluate the test accuracy of that fully-trained model. 221

Demographic Parity Difference. The demographic parity 222

difference ∆DP [Dwork et al., 2011] measures the difference 223

in selection rates between sensitive groups and is defined for 224

targets predictions t̂ and sensitive labels s as 225

∆DP = |P (t̂ = 1|s = 1)− P (t̂ = 1|s = 0)|.
Results. Table 1 reports best target accuracy achieved by 226

each method at different cutoffs of sensitive accuracy and 227

demographic parity (∆DP ). Results spanning this tradeoff 228

are collected by varying the adversarial penalty coefficient α 229

between 0.1 and 1000 by factors of 10, for all methods but 230

MLP. Each method and parameter setting is run with 5 ran- 231

dom seeds. We observe that our approaches, CE-OptARL 232

and Ent-OptARL, outperform their respective standard ARL 233

counterparts. The OptARL approaches provide better target 234

accuracy at the given sensitive accuracy cutoffs, demonstrat- 235

ing that differentiating through the adversary’s optimization 236



COMPAS sens acc < 0.98 sens acc < 0.99 sens acc < 1.00 ∆DP < 0.10 ∆DP < 0.15 ∆DP < 0.20

MLP - - 0.6961 - 0.6945 0.6961
CE-ARL - 0.5429 0.6848 0.6005 0.6572 0.6848

CE-OptARL (ours) 0.701 0.701 0.701 0.6969 0.701 0.701
Ent-ARL - 0.6921 0.6921 0.6669 0.6872 0.6921

Ent-OptARL (ours) 0.701 0.701 0.701 0.7002 0.7002 0.7002

Health sens acc < 0.30 sens acc < 0.32 sens acc < 0.34 ∆DP < 0.40 ∆DP < 0.60 ∆DP < 0.80

MLP - 0.8177 0.8192 - 0.8192 0.8192
CE-ARL - 0.8176 0.8176 0.708 0.8176 0.8176

CE-OptARL (ours) 0.8165 0.8178 0.8178 - 0.8178 0.8178
Ent-ARL 0.7492 0.8184 0.8194 0.7066 0.8194 0.8194

Ent-OptARL (ours) 0.8203 0.8203 0.8203 0.6883 0.8203 0.8203

Adult sens acc < 0.68 sens acc < 0.69 sens acc < 0.70 ∆DP < 0.10 ∆DP < 0.15 ∆DP < 0.20

MLP 0.8216 0.8242 0.8242 - 0.8242 0.8242
CE-ARL 0.8163 0.8163 0.8163 0.814 0.8163 0.8163

CE-OptARL (ours) 0.8248 0.8248 0.8248 0.8167 0.8248 0.8248
Ent-ARL 0.8186 0.821 0.821 0.8153 0.821 0.821

Ent-OptARL (ours) 0.8192 0.827 0.827 0.8013 0.827 0.827

German sens acc < 0.90 sens acc < 0.95 sens acc < 1.00 ∆DP < 0.02 ∆DP < 0.03 ∆DP < 0.04

MLP 0.6933 0.73 0.73 0.6933 0.6933 0.6933
CE-ARL 0.6967 0.71 0.71 0.6967 0.6967 0.6967

CE-OptARL (ours) 0.72 0.72 0.72 0.7 0.72 0.72
Ent-ARL 0.7067 0.7067 0.7067 0.69 0.7 0.7067

Ent-OptARL (ours) 0.7333 0.7333 0.7333 0.7267 0.7267 0.7333

Table 1: Target accuracy at fairness cutoffs: We present test results for maximum target accuracy at given cutoffs on the accuracy of a fully-
trained adversary (sens acc), as well as on the demographic parity (∆DP ). These cutoffs are selected for each dataset to span the distribution
in the results. Metrics are obtained by varying the adversarial penalty coefficient α between 0.1 and 1000 by factors of 10.

procedure is able to improve the desired effect of adversar-237

ial representation learning. In addition, we observe that our238

methods provide better target accuracy at most ∆DP cutoffs,239

with the exception of the Adult and Health datasets only at240

the lowest ∆DP threshold.241

Related Work242

In [Zemel et al., 2013], the authors optimize clusters of indi-243

viduals to generate discrete and fair representations. [Calmon244

et al., 2017] optimize a random data transformation preserv-245

ing utility for downstream tasks but obfuscating sensitive at-246

tributes. Approaches with alternating training such as [Roy247

and Boddeti, 2019; ?] iteratively train an embedding along248

with an adversary by optimizing the models with respective249

parameters and objectives. These approaches generally for-250

mulate the objective of the embedding using an optimal ad-251

versary; however, the optimiziation procedures don’t differ-252

entiate through the adversary’s optimization procedure, and253

instead treat the adversary’s parameters as constants during254

backpropagation to the embedding model. Previous work has255

considered a similar differentiable optimization approach for256

meta-learning, proposing a differentiable svm optimization257

algorithm [Lee et al., 2017], closed-form ridge-regression258

formulation, or iterative logistic regression solver [Bertinetto259

et al., 2019] as a last-layer fine tuning methodology. In our260

work, we consider adversarial representation learning, and di-261

rectly differentiate through the optimality condition of logis-262

tic regression rather than the unrolled solver iterates.263

Discussion 264

We improve adversarial representation learning approaches 265

by implicitly defining the fully-trained adversary as a differ- 266

entiable function of the embedding, allowing us to directly 267

train the representation with gradient information from the 268

adversary’s optimality conditions. In particular, we provide 269

a novel methodology for computing gradients of the optimal 270

logistic regression adversary with respect to the input embed- 271

dings. This approach can be viewed in several lights. One in- 272

terpretation is that we fully backpropagate the global loss (the 273

penalty of the adversary and the target performance) through 274

the adversary optimization to the embedding model’s param- 275

eters. Another facet is that we train the embedding with ex- 276

plicit information about how the fully-trained adversary will 277

change due to changes in the embedding. Lastly, we can view 278

the overall optimization procedure as optimizing the embed- 279

ding for the loss it observes at equilibrium in the 3-player 280

game formulation suggested in [Roy and Boddeti, 2019]. 281

The evaluation using four different datasets, spanning 282

criminal risk assessment, healthcare, and finance, showed that 283

our optimal adversary approach improves the performance of 284

both adversarial representation learning baselines. In particu- 285

lar, we showed we are able to (almost always) provide better 286

target accuracy at different thresholds on fairness in terms of 287

both sensitive accuracy and demographic parity. 288

Since our contribution enables logistic regression fitting as 289

a differentiable layer in any end-to-end learning, we hope in 290

future work to evaluate other relevant settings. 291
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