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Abstract
Disease dynamics, human mobility, and public
policies co-evolve during a pandemic such as
COVID-19. Understanding dynamic human mo-
bility changes and spatial interaction patterns are
crucial for understanding and forecasting COVID-
19 dynamics. We introduce a novel graph-based
neural network(GNN) to incorporate global aggre-
gated mobility flows for a better understanding of
the impact of human mobility on COVID-19 dy-
namics as well as better forecasting of disease dy-
namics. We propose a recurrent message passing
graph neural network that embeds spatio-temporal
disease dynamics and human mobility dynamics
for daily state-level new confirmed cases forecast-
ing. This work represents one of the early papers on
the use of GNNs to forecast COVID-19 incidence
dynamics and our methods are competitive to exist-
ing methods. We show that the spatial and tempo-
ral dynamic mobility graph leveraged by the graph
neural network enables better long-term forecasting
performance compared to baselines.

1 Introduction
The COVID-19 pandemic has affected almost every country
in the world and has resulted in an unprecedented response
by governments across the world to control its spread. The
social distancing measures are one of the most effective non-
pharmaceutical interventions at this stage. The social dis-
tancing measures have led to significant change in human
mobility behaviour while the mobility change has also af-
fected the disease dynamics inevitably. To better understand
COVID-19 dynamics and help to control the disease spread,
it is crucial and challenging to provide accurate and timely
spatio-temporal forecasting of epidemic dynamics. As ma-
chine learning and artificial intelligence(AI) has been suc-
cessful in many domains, there is an urge to investigate how
we can leverage AI-based technologies for infectious disease
understanding, modeling, forecasting, and controlling. In this
work, we focus on applying AI-based techniques to solve
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the above challenge by incorporating a new large-scale ag-
gregated spatio-temporal mobility data into graph-based neu-
ral networks. Using aggregate mobility data to understand
COVID-19 dynamics has received wide interests recently.
There have been a number of recent studies along these lines,
for example, in China using Baidu data [Chinazzi et al.,
2020], in the US using mobility data [Kraemer et al., 2020;
Adiga et al., 2020b], and at a global scale using airline traf-
fic [Adiga et al., 2020a]. On the other side, lots of COVID-
19 forecasting methods are proposed since the initial out-
break early this year, such as mechanistic methods [Yang et
al., 2020; Anastassopoulou et al., 2020; Kai et al., 2020],
and time series methods using statistical regression models
[Ribeiro et al., 2020] or deep learning model [Ramchandani
et al., 2020]. However few of the existing works investi-
gate spatio-temporal forecasting using graph neural network
(GNN) with integrated real-time mobility data. In our work,
we introduce a novel method to incorporate global population
mobility flows into graph-based spatial-temporal neural net-
works for COVID-19 dynamic forecasting. Our major contri-
butions are:

• We analyze the joint effects of social-distancing guide-
lines and mobility patterns at US state levels using an
integrated map of mobility flows (MF ), COVID-19
Surveillance data and data on social distancing guide-
lines;

• We design a dynamic mobility informed GNN that con-
siders both temporal dynamics and cross-location co-
evolution dynamics using a recurrent message passing
(RMP) module to recurrently embed information from a
node’s neighbors;

• We also design multiple variants of the proposed model
which use static mobility graph, geographical adjacency
graph, and attention-based trainable graph;

• We evaluate the proposed model on forecasting the US
state level daily new cases, and demonstrate that the dy-
namic spatial and temporal mobility informed GNN al-
lows for better forecasting performance compared with
its variants as well as several existing classic and state-
of-the-art time series methods.



Figure 1: An example of two-hop RMP architecture. Temporal node
feature and edge feature vectors are encoded using the feature en-
coder module. A two-hop RMP module is used to further embed
spatio-temporal information to hidden representations. The output
module makes the final predictions.

2 Methods

2.1 Problem formulation

Assuming we have N regions in total. Each region is as-
sociated with time series of multiple observed features, e.g.
surveillance cases, in a time window T , where T is the ob-
servation duration. It could be of weekly or daily granularity
depending on the data resolution. We define a dynamic graph
of N regions as G(V, E , T ), where V is the set of N nodes,
E ⊆ V × V is the set of edges, and T is the set of T time
points. A node vi at time t is attributed with dvi,t ∈ RDv

where Dv is the node feature numbers. An edge eij ∈ E
at time t connecting nodes vi and vj is weighted by either
adjacency matrix or mobility flow matrix, is attributed with
deij ,t ∈ RDe where De is the edge feature numbers.

2.2 Mobility informed graph neural networks

Constructing the graph. We construct a dynamic mobility
graph G(V, E , T ), where each node feature dv includes a se-
quence of dynamic observations regarding the the region in a
history window H ≤ T . We include daily new case count,
new death count and intra-region mobility flow (fii(t) which
represents the MF from vi to vi during time t) as the node
features, i.e. dvi,t ∈ RH×3. The graph edge features are de-
rived from the inter-region mobility by aggregating Google
mobility data to the state or county level. At a certain time
point t, if there is any human movement from region j to re-
gion i in the past H days, we add a directed edge eji that
connects region j and i, and associate it with the inter-region
mobility flow fji(t) and flow of active cases from source re-

gion (defined as factiveji (t) =
Nactive

j (t)

Npopu
j

∗ fji(t)) as the edge

feature i.e. deji,t ∈ RH×2 where Nactive
j (t) is the number

of active cases (cumulative cases minus recovered cases and
deaths) and Npopu

j is the population of region j.

Feature encoding. In the graph, node feature vectors and
edge feature vectors include temporal information from the
past. We encode the vectors using a Long Short-Term Mem-
ory (LSTM) module. At time step t ∈ T , for each feature
vector dvi,t or deij ,t, the LSTM module encodes the vector

into hidden representations as:

hi,t = p(dvi,t, θ
v) ∈ RH

n

,

aji,t = p(deji,t, θ
e) ∈ RH

e (1)

where p denotes LSTM cell computation, Hn and He are
hidden dimension of node feature and edge feature, θv and θe
are parameters to be learned.

Spatio-temporal message passing. A region’s COVID-19
dynamics can potentially be affected by regions where fre-
quent travels occur between them. This resembles the core
insight behind graph neural network models, i.e. the trans-
formation of the input node’s signal can be coupled with the
propagation of information from a node’s neighbors in order
to better inform the future hidden state of the original input.
This is most evident in the unified message-passing frame-
work proposed by [Gilmer et al., 2017]. In our model, we de-
sign an Recurrent Message Passing (RMP) module to recur-
rently pass the hidden representations from a node’s neigh-
bors to the current node. As shown in Figure 1, the RMP
module has two phases: the message passing (MP) phase and
the update phase (UP). It runs for L rounds, so any node in
the graph is taking into account of neighbors that are L hops
away. To be more specific, at time t, given a node vi at a
certain round (l + 1): In the MP phase, for each node pair
(vi, vj) that vj ∈ N (i) where N i denotes neighbors of vi,
we first combine the node hidden states hi,t, hj,t and in-edge
hidden representations aji,t from previous round l using a
message passing function f to get a hidden state aji,t at cur-
rent round l + 1. It will later be aggregated (we use mean
operation but can be sum, max, etc.) together over all pairs
to obtain a message mi for node vi. In UP phase, we use a
node upate function g to update the the node hidden states.
The hidden states of the node vi at the (l + 1)th round hl+1

i,t
are updated in RMP module as :

a
(l+1)
ji,t = f

(
h
(l)
i,t ,h

(l)
j,t,a

(l)
ji,t, θ

f
)
∈ RH

e
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(l+1)
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∑
j∈N (i)
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(l+1)
ji,t ∈ RH
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,
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(l+1)
i,t , θg

)
∈ RH

n
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where θf and θg are module parameters to be learned, N (i)
denotes the neighbors of vi where there exists eji, f is the
message passing function that uses a multilayer perceptron
(MLP) and g is the node update function that uses Gated Re-
current Unit (GRU), m(l+1) is the messages passed between
nodes.

Output layer. We feed the hidden representations to the out-
put layer for the final predictions:

ŷi,t = o
(
h
(L)
i,t , θ

o
)
∈ R (3)

where θo is the parameters to be learned, o is the output func-
tion which is a multilayer perceptron (MLP) in our model.

Forward passing process. As shown in Figure 1, we
first feed the sequences of temporal node and edge features
through the feature encoding module to obtain node and edge



Algorithm 1: MF informed GNN forward passing
Input: Time series of COVID-19 surveillance data for N

regions, Google mobility flow data among N
regions.

1 for each time step t do
2 for each region i do
3 hi,t ← FtrEncode(dvi,t)

4 for each region pair (i, j) do
5 aji,t ← FtrEncode(deji,t)

. Simultaneous calculations for all
regions

6 for each region i do
7 for l in 0, . . . , L− 1 do
8 hl+1

i,t ← RMP(h(l)
i,t ,h

(l)
j,t,a

(l)
ji,t)

9 ŷi,t ← Output(h(H)
i,t )

embedding, which are utilized as the initial node and edge
hidden representations for the RMP module. Then we per-
form MP and UP computations for L rounds. This is the
core step to allow one region to leverage information from
its neighbors and their connectivity in between. The output
module will output the final predictions.

Proposed models. The proposed model aims to examine the
effect of dynamic mobility on understanding and forecasting
COVID-19 dynamics. Thus we design several variants of
the proposed model using dynamic mobility graph denoted
as GNN-dmob , using a static mobility graph denoted as
GNN-smob , using a geographical adjacency graph denoted
as GNN-adj , and using an attention-based matrix denoted as
GNN-att . The details are listed below.

• GNN-dmob the proposed model with dynamic mobil-
ity graph.

• GNN-adj uses the same graph structure with GNN-
dmob but remove intra-region mobility flow from node
features i.e. dvi,t ∈ RH×2, and construct an adjacency
matrix by adding an edge eij if region j is a neighbor
of region i with edge weight 1. The adjacency matrix is
normalized by row summation. It is static across time
steps, thus the edge feature is deij ,t ∈ R.

• GNN-smob is similar to the GNN-adj but obtained
by replacing the adjacency matrix with a static mobil-
ity graph which is an average of mobility graphs from
March 1st, 2020 to August 2nd, 2020.

• GNN-att is inspired by cola-GNN proposed in [Deng
et al., 2019]. Instead of using a physical matrix in our
model, we implement an attention-based model that al-
lows the model to learn an attention matrix of all the
regions. In MP phase, we update the message between
nodes as:

m
(l+1)
i,t = η

(∑
j∈N

a
(l)
ji,th

(l)
j,t, θ

η
)

(4)

where θη is the trainable parameters, aji is the attention
coefficient defined as: a(l)ji,t = vTσ(W ih

(l)
i,t+W jh

(l)
j,t+

b) ∈ R where v ∈ RHa

, W ∈ RHa×Hf

, b ∈ RHa

are
trainable parameters, σ is Rectified Linear Units (ReLU)
applied at element-wise.

3 Experiments
3.1 Datasets
Google COVID-19 Aggregated Mobility Research
Dataset, which contains the anonymized relative MF aggre-
gated weekly over users within a 5 km2 cell. COVID-19
surveillance data (CSD) via the UVA COVID-19 surveil-
lance dashboard [UVA, 2020 accessed August 29 2020]. It
contains daily confirmed cases and death count worldwide.
The data is available at the level of a county and state in
the US. Daily case counts and death counts are further
aggregated to weekly counts.

3.2 Metrics
The metrics used to evaluate the forecasting performance are:
root mean squared error (RMSE) and Pearson correlation
(PCORR).

3.3 Baselines
We implemented several classic and state-of-the-art time se-
ries models as the comparison methods. They are Naive (uses
the observed value of the most recent time point as the fu-
ture prediction) , Autoregressive (AR ), Autoregressive Mov-
ing Average (ARMA ), Long Short-term Memory (LSTM ),
CNNRNN [Wu et al., 2018], and cola-GNN [Deng et al.,
2019].

3.4 Settings and implementation details
The weekly mobility graph is expanded to daily by dividing
the weekly values by 7. The training data set is from March
1st to August 1st (125 days), the testing set is from August
2nd to August 29th (28 days). We make 2, 7, 14, 21, and 28
days ahead forecasting for each data point in the testing set.
For all models, the historical window H = 28. For GNN-
dmob , we use a single layer LSTM for feature encoding
with 16 units, a two-layer MLP in MP phase with 32 and 16
units, and a single layer GRU in UP with 16 units. The same
settings are used for GNN-smob , GNN-att , and GNN-adj .
AR and ARMA use AR order 28 and ARMA uses MA order
2. CNNRNN and cola-GNN set with their best parameter
settings in the original paper. We set batch size as 32, epoch
number as 1000. MSE loss and Adam Optimizer with de-
fault settings and early stopping with patience of 100 epochs
are used for all model training. All results are average of 5
random runs.

3.5 Research findings
In this section, we present key findings and results.

Spatio-temporal analysis of MF patterns and COVID-19
dynamics in the US
In order to analyze the human mobility and COVID-19 dy-
namics during different phases of the pandemic, we use a
4-week window and moving one week ahead each time to
compute Pearson correlation between new confirmed cases



Figure 2: Pearson correlation between MF and new confirmed cases,
together with state level social distancing mandates including emer-
gency declaration (purple), school closure (orange), and stay-at-
home (blue) are marked. A boxplot is used to display variation in
samples of 53 states each week. The median value is shown along
with the median line.

(a) Correlation (train) (b) Correlation (test)

Figure 3: Heatmap of Pearson correlation matrix of state level time
series of new confirmed cases. (3a) training data and (3b) testing
data. We can observe that the pattern of correlations between states
changed dramatically from training dataset to testing dataset.

and MF within the window. Figure 2 shows the Pearson
correlation along the weeks. We observe that mobility flow
and new confirmed cases show very high negative correlation
(median -0.97) for almost all states during March when most
of states mandated school closure and stay-at-home orders.
This indicates that COIVD-19 dynamics and human mobil-
ity are highly correlated. Starting from the mid April when
the states started to reopen to some degree, there is a large
variation in correlation values, which indicates that COVID-
19 dynamics varies a lot due to that it is affected by multiple
complicated factors like local population size, individual be-
haviours (e.g. wearing a mask or not in public location), and
government reopening guidelines.

Forecasting performance and discussion
The proposed GNN-dmob model is evaluated w.r.t. forecast-
ing daily new confirmed cases at US state level for 2, 7, 14, 21
and 28 days ahead. Table 1 presents the RMSE, and PCORR
performance averaging across 53 states and 28 days. In gen-
eral, we observe that GNN-dmob has better RMSE perfor-
mance than the comparisons for long-term forecasting. The
best performances on PCORR are evenly distributed among
the proposed models. The results indicate that our proposed
methods can capture the disease dynamic in both short-term
and long-term. Naive baseline outperforms the other base-
lines for 7, 14, 21, 28 days ahead forecasting. This is not sur-
prising because the testing data is from August during when
the time series of all states are showing downward trends with
small changing rates. The Naive assumes certain level of

Table 1: RMSE and PCORR performance of different methods on
the US state dataset with horizon = 2, 7, 14, 21, and 28. The values
are average of 5 runs. Bold face indicates the best results of each
column.

US state
RMSE(↓) 2 7 14 21 28

Naive 411 389 445 496 525
AR 376 634 866 975 978
ARMA 400 637 944 1107 1186
LSTM 368 504 517 567 605
CNNRNN 416 432 512 606 659
cola-GNN 320 502 451 530 714
GNN-adj 310 411 407 412 513
GNN-att 319 479 985 457 745
GNN-smob 313 405 410 406 510
GNN-dmob 313 330 350 445 465
PCORR(↑) 2 7 14 21 28

Naive 0.106 0.361 0.310 0.261 0.157
AR 0.283 0.282 0.044 -0.017 -0.097
ARMA 0.281 0.260 0.071 -0.078 -0.133
LSTM 0.227 0.305 0.287 0.226 0.204
CNNRNN 0.211 0.250 0.265 0.248 0.029
cola-GNN 0.366 0.341 0.247 0.175 0.176
GNN-adj 0.293 0.395 0.319 0.315 0.280
GNN-att 0.376 0.256 0.087 0.136 0.238
GNN-smob 0.321 0.382 0.297 0.294 0.226
GNN-dmob 0.298 0.344 0.320 0.287 0.216

regularity in the time series leading to good forecasting per-
formance on the testing data. DNN-based models perform
better than AR-based models especially on long-term fore-
casting which indicates that DNN-based models have better
generalization capability for forecasting unseen data. In our
experiments, attention-based models cola-GNN and GNN-
att are not outstanding for both short and long-term forecast-
ing. A possible reason is that the learned attention coeffi-
cients are outdated due to the fast evolution in COVID-19
dynamics between training time period and testing time pe-
riod (see Figure 3), which leads to false attention by regions
while predicting. The proposed method GNN-dmob explic-
itly projects the most recent mobility patterns to the future
potentially leading to better performance.

4 Conclusion

The paper introduces a novel GNN framework to incorporate
aggregated mobility flows for better understanding the im-
pact of human mobility on COVID-19 dynamics as well as
better forecasting of disease dynamics. We propose a recur-
rent message passing GNN to embed spatio-temporal disease
dynamics (COVID-19 surveillance data) and human mobil-
ity dynamics (MF data) while making forecasting. The ex-
periment results of forecasting daily COVID-19 new cases
for each state in the US demonstrate the additional improve-
ments obtained by using the mobility data. The use of GNN
for COVID-19 is just beginning and our results are some of
the first results in this area to yield good performance.
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