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Abstract
Privacy-preserving machine learning is becoming
increasingly important as models are being used
on sensitive data such as electronic health records.
Differential privacy is considered the gold standard
framework for achieving strong privacy guarantees
in machine learning. Yet, the performance implica-
tions of learning with differential privacy have not
been characterized in the presence of time-varying
hospital policies, care practices, and known class
imbalance present in health data. First, we demon-
strate that due to the long-tailed nature of health-
care data, learning with differential privacy results
in poor utility tradeoffs. Second, we demonstrate
through an application of influence functions that
learning with differential privacy leads to dispro-
portionate influence from the majority group on
model predictions which results in negative conse-
quences for utility and fairness. Our results high-
light important implications of differentially pri-
vate learning; which focuses by design on learn-
ing the body of a distribution to protect privacy but
omits important information contained in the tails
of healthcare data distributions.

1 Introduction
The potential for machine learning to improve healthcare
through secondary analysis of electronic health records
(EHR) data has been demonstrated across a variety of
tasks [Tomašev et al., 2019; Gulshan et al., 2016; Wu et al.,
2019; Rajkomar et al., 2018b]. To protect patient informa-
tion, EHR data is often anonymized. However, linkage at-
tacks allow a malicious entity to leverage access to external
data to de-anonymize data [Narayanan and Shmatikov, 2008].
This external data may for instance contain auxiliary infor-
mation about individuals whose data was anonymized in the
first place. Linkage attacks have been used to de-anonymize
public releases of healthcare data [Sweeney, 2015]. Machine
learning models are also known to be susceptible to member-
ship inference and attribute inference attacks [Shokri et al.,
2017] where the adversary may recover sensitive information
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about an individual contained in the training set of a model
trained without privacy guarantees.

Differential privacy (DP) is the current gold standard
framework for analyzing the privacy guarantees of random-
ized algorithms, of which machine learning algorithms are
an example of [Dwork et al., 2006]. Differentially private
stochastic gradient descent (DP-SGD) is a commonly-used
technique for training machine learning models with differ-
ential privacy [Abadi et al., 2016]. Despite its advantages in
terms of privacy guarantees provided for the training data, the
DP-SGD training algorithm often introduces a privacy-utility
tradeoff. This tradeoff has been characterized in settings such
as vision [Papernot et al., 2020] and tabular data [Jayaraman
and Evans, 2019]. The utility tradeoff is highly dataset de-
pendent, motivating our novel, extensive analysis of its use in
a healthcare setting.

EHR data is different from other domains because it often
contains noisy and missing measurements, changing popula-
tions, and changing healthcare practices that result in dataset
shift over time. Furthermore, rare positive cases and minori-
ties often exist in the “tails”. These issues present unique
challenges ensuring strong performance in the presence of
class imbalance for existing machine learning methods. How-
ever, DP-SGD has been primarily developed and evaluated on
datasets that are well-balanced. Because DP-SGD focuses on
learning the body of a distribution as the privacy increases,
the amount of information lost from the tails of healthcare
data distributions is important to understand.

Given these unique challenges in the data, we examine
whether DP-SGD can feasibly be used in machine learning
for healthcare. We train both linear models and neural net-
works on several tasks in MIMIC-III, a publicly available
EHR database. We analyze (1) whether linear models or
neural networks provide better tradeoffs and (2) whether in-
fluence functions can be used to explain the tradeoffs and
whether DP results in model decision making that is concern-
ing based on known clinical practices.

We demonstrate that DP-SGD is currently not suited for
use in machine learning for healthcare because it focuses on
the body of the data distribution and (by design, to protect
their privacy) does not learn about the tails of the data distri-
bution. For instance, we find that learning with strong differ-
ential privacy guarantees can cause the training data for a ma-
jority ethnicity group to have more influence on the model’s



predictions. This is an undesirable effect given that the use
of ethnicity remains poorly understood in healthcare. Future
work should target relaxations of differential privacy that en-
able improved learning on long-tailed distributions and mod-
ifications to DP-SGD that address its feasibility for machine
learning in healthcare.

2 Related Work

Differential Privacy. Differential privacy formalizes the pri-
vacy guarantees of randomized algorithms, such as stochas-
tic gradient descent. [Dwork et al., 2006]. An algorithm is
differentially private if its output is statistically indistinguish-
able when applied to two input datasets that differ by only
one record (Hamming distance of 1). Formally, a learning
algorithm L that trains models from the dataset D satisfies
(ε,δ)-DP if the following holds for all training datasets d and
d′ with a Hamming distance of 1:

Pr[L(d) ∈ D] ≤ eεPr[L(d′) ∈ D] + δ (1)

The parameter ε measures the formal privacy guarantee by
defining a strong upper bound on the privacy loss in the worst
possible case. A smaller ε represents stronger privacy guaran-
tees. The δ factor allows for some probability that the prop-
erty may not hold.

Differential Privacy in Healthcare. Prior work on DP
in machine learning for health has focused on the dis-
tributed setting, where multiple hospitals collaborate to learn
a model [Beaulieu-Jones et al., 2018; ?], and has primar-
ily found that DP learning negatively impacts model AU-
ROC. We instead focus on analyzing the tradeoffs in multi-
ple healthcare tasks of varying levels of class imbalance and
providing an empirical explanation for these tradeoffs using
influence functions with an emphasis on the impact that DP
has on subgroups.

Explaining Machine Learning Through Influence. Ini-
tial findings show that an important factor in clinicians trust-
ing machine learning is presenting them an explanation of
how the model came to its prediction [Tonekaboni et al.,
2019]. Influence functions have been demonstrated as a tech-
nique to measure the effects of individual training points on a
model’s prediction [Koh and Liang, 2017] and have been ex-
tended to approximate the effects of subgroups on a model’s
prediction [Koh et al., 2019]. Recent work demonstrates that
memorization is required for small generalization error on
long-tailed distributions and that influence function can be
used to explain this phenomena in learning algorithms [Feld-
man, 2020]. We use these findings to inform why healthcare
has poor utility tradeoffs and whether DP-SGD makes predic-
tions in ways that clinicians would trust.

3 Data

For our healthcare tasks, we use the MIMIC-III
database [Johnson et al., 2016]—a publicly available
anonymized EHR dataset of intensive care unit (ICU)
patients.

4 Methods
We define two distributions of patients, p and q where q is
shifted and assume the ability to sample from both. Given a
dataset {(x1, y1), ...(xn, yn)} ∼ p, test data from our shifted
distribution {(x1, y1), ...(xn, yn)} ∼ q, and three levels of
DP {None, Low,High}, we analyze the tradeoffs between
privacy and utility. In the healthcare setting, xi is a combi-
nation of static variables and time series for each patient. We
partition the healthcare data into p and q based on the year
of care: for a given year y, all records prior to y are used to
train, and records from y itself are test. We use linear models
and neural networks for experiments on two binary prediction
tasks and one mutliclass prediction task.
Models For all healthcare tasks analyses, we choose one
linear model and one neural network per task, based on the
best baselines outlined in prior work creating benchmarks for
the MIMIC-III dataset [Wang et al., 2019]. For binary pre-
diction tasks we use logistic regression (LR) [Cox, 1972] and
gated recurrent unit with decay (GRUD) [Che et al., 2018].
For our multiclass prediction task, we use LR and 1D CNNs.
Differentially Private Training We train models without
privacy guarantees using stochastic gradient descent (SGD).
When training models with privacy guarantees, we use DP-
SGD [Abadi et al., 2016]. The modifications made to SGD
involve clipping gradients computed on a per-example basis
to have a maximum `2 norm, and then adding Gaussian noise
to these gradients before applying the model parameter up-
dates [Abadi et al., 2016]. We choose three different levels of
privacy to measure the effect of increasing levels of privacy
outlined below:

PRIVACY LEVEL NONE LOW HIGH

(CLIP NORM, NOISE MULTIPLIER) (0.0,0.0) (5.0,0.1) (1.0,1.0)

Table 1: Clipping norm and noise multiplier values used to achieve
our high and low privacy settings.

Influence Functions Given a set of training points
{xi, yi} ∼ p and model parameters θ we calculate the in-
fluence through the loss to be L(x, θ) and let 1

nΣni=1L(xi, θ).
The empirical risk is assumed to be smooth and strictly con-
vex in θ. Given this setup and assumptions we focus our
analysis on logistic regression since our neural networks are
non-convex in θ. Using the approach from [Koh and Liang,
2017] we analyze the influence of all training points on the
loss for each test point defined in Equation 2. Influence func-
tions use an additive property for interpreting the influence of
subgroups showing that the group influence is the sum of the
influences of all individual points in the subgroup but that this
is usually an underestimate of the true influence of removing
the subgroup [Koh et al., 2019].

Iup,loss(ztrain, ztest) = −∇θL(ztest, θ̂)
TH−1

θ̂
∇θL(ztrain, θ̂)

(2)
Experimental Design First, we analyze the privacy-utility
tradeoff by training linear models and neural networks with
three privacy levels in the healthcare tasks. We measure the
utility using AUC in the healthcare tasks, with the privacy



measured using the ε bound derived from DP. Finally, we use
influence functions to measure the influence of points from p
on the test loss of points from q and the connection between
these influences and the utility tradeoff. Influences above 0
mean the training point was helpful in minimizing the test
point loss and below 0 mean the training point increased the
test point loss.

5 Healthcare Tasks Have Worse Utility
Tradeoffs

We characterize the privacy-utility tradeoff across healthcare
tasks varying tail sizes. For the healthcare tasks, we define the
privacy utility tradeoffs by taking the average AUROC across
all years of care, for each of the privacy levels and models
defined in the methods in Table 2.

TASK MODEL NONE LOW HIGH

MORTALITY LR 0.82± 0.03 (∞) 0.76± 0.05 (3.50 · 105) 0.60± 0.04 (3.54)
GRUD 0.79± 0.03 (∞) 0.59± 0.09 (1.59 · 105) 0.53± 0.03 (2.65)

LENGTH LR 0.69± 0.02 (∞) 0.66± 0.03 (3.50 · 105) 0.60± 0.04 (3.54)
OF STAY GRUD 0.67± 0.03 (∞) 0.63± 0.02 (1.59 · 105) 0.61± 0.03 (2.65)

INTERVENTION LR 0.90± 0.03 (∞) 0.87± 0.03 (1.63 · 107) 0.77± 0.05 (0.94)
ONSET (VASO) CNN 0.88± 0.04 (∞) 0.86± 0.02 (5.95 · 107) 0.68± 0.04 (0.66)

Table 2: Privacy utility tradeoff across healthcare tasks. The health-
care tasks have a significant tradeoff between the High and Low or
None setting. The tradeoff is better in more balanced tasks (length
of stay and intervention onset), and worst in tasks such as mortality
where class imbalance is present at 7.4% positive cases. There is
a 22% and 26% drop in the AUROC between no privacy and high
privacy settings for mortality prediction for LR and GRUD respec-
tively. We provide the ε guarantees in parentheses.

Comparing the privacy utility tradeoffs in Table 2, DP-
SGD has negative consequences on the model utility when
the task and dataset is difficult due to important tails in the
data distribution. The extreme tradeoffs in mortality predic-
tion capture this issue since the positive cases are in the tails
of the distribution.

6 Group Privacy Gives Over-Influence for
Majority Groups

We focus group privacy analyses on the LR model for mortal-
ity prediction, examining the no privacy and high privacy set-
tings. Along with guaranteeing individual privacy, DP guar-
antees group privacy. The group privacy guarantees state
that the ε guarantee degrades linearly based on the size of
the group. Gradient clipping results in tightly bounded in-
fluence of all training points across test points whereas indi-
vidual training points have much more helpful and harmful
influence without DP.

Utility Tradeoff The mortality task, where tails of the dis-
tribution hold the patients who died, has the largest privacy-
utility tradeoff because DP focuses on the patients who sur-
vived that make up the body of the distribution. This results
in over-influence for the patients who survived, while the no
privacy model finds the patients who died to be the most help-
ful in its predictions (Fig. 1 and Table 3).

This result requires careful thought, as the tails of the label
distribution are minority-rich, which results in poor perfor-
mance for DP. Differences in access, practice, or recording
reflect societal biases [Rajkomar et al., 2018a; Rose, 2018],
and models trained on biased data may exhibit unfair perfor-
mance in populations due to this underlying variation [Chen
et al., 2019]. Further, while patients with the same diagno-
sis are usually more helpful for estimating prognosis in prac-
tice [Croft et al., 2015], labels in healthcare often lack pre-
cision or, in some cases, may be unreliable [O’malley et al.,
2005]. In this setting, understanding what factors are consis-
tent in patient phenotypes is an important task [Halpern et al.,
2016; Yu et al., 2017].

Fairness Tradeoff We use influence functions to approx-
imate the group influences of different ethnicities to under-
stand the privacy fairness tradeoffs. Following the same set-
ting as the previous section, we present the group influences
of different ethnicities in the training set on the test loss in
Fig. 2.

Group privacy results in white patients having a more sig-
nificant influence, both helpful and harmful, on both white
and black patients in the high privacy setting (Table 4). Eth-
nicity is currently an important consideration in clinical prac-
tice, where different risk profiles are often assumed for the
patients of different races [Martin, 2011]. The validity of
this stratification has recently been called into question by
the clinical community, and is still being explored [Eneanya
et al., 2019]. Prior work has established the complexity of
treatment variation in practice, as patient care plans are highly
individualized, e.g., in a cohort of 250 million patient, 10%
of diabetes and depression patients and almost 25% of hyper-
tension patients had a unique treatment pathway [Hripcsak et
al., 2016]. Thus having the white patients be most influential
in the predictions of the black patients in models trained with
different privacy constraints, should be carefully considered.

7 Conclusion
In this work, we investigate the feasibility of using DP-SGD
to train models for healthcare prediction tasks. We find that
DP-SGD is not well-suited to healthcare prediction tasks
in its current formulation. First, we demonstrate that DP-
SGD increasingly targets the body of a distribution as pri-
vacy level increases, losing important information about mi-
nority classes (e.g., dying patients, minority ethnicities) that
lies in the distributional tails. Our analyses demonstrate that
this results in extreme privacy-utility tradeoffs. We show that
the group privacy guarantee of DP plays a large role in this
tradeoff, and that it results in over-influence of the major-
ity group (e.g., white patients, healthy patients) on patients
in the minority class label (hospital mortality) and ethnicity
(e.g., black patients). This imposed asymmetric valuation of
data by the model requires careful thought, because the ap-
propriateness of minority class membership use in clinical
settings in an active topic of discussion and debate. Future
work should target modifying DP-SGD, or creating novel DP
learning algorithms, that can learn from data distribution tails
effectively, without compromising privacy.



PRIVACY LEVEL AVERAGE MAJORITY INFLUENCE AVERAGE MINORITY INFLUENCE MOST HELPFUL GROUP MOST HARMFUL GROUP INFLUENCE
NONE −1.07± 7.25 2.28± 6.91 DIED (MINORITY) SURVIVED (MAJORITY)
LOW −0.34± 0.95 0.03± 0.18 SURVIVED (MAJORITY) SURVIVED (MAJORITY)
HIGH −0.14± 4.69 0.04± 1.34 SURVIVED (MAJORITY) SURVIVED (MAJORITY)

Table 3: Group influence summary statistics of training data by class label in all privacy levels for all test patients. Privacy changes the most
helpful group from the minority to the majority and minimizes the minority group’s helpful influence.

Figure 1: Group influence of training data per class label in no privacy (A) and high privacy (B) settings on 100 test patients with highest
influence variance. In the no privacy setting, patients who died have a helpful influence despite being a minority class. High privacy gives
the majority group the most influence due to the group privacy guarantee. This results in prognostically dissimilar patients having the most
influence on the model’s prediction.

Figure 2: Group influence of training data per ethnic groups on 100 test patients with highest influence variance. The group influence of our
majority ethnicity (white patients) is enhanced significantly in the high privacy setting, as demonstrated by the increased amplitude of those
points in (B) and (D). In the no privacy setting the group influence of each ethnicity is similar for both white (A) and black patients (C).

WHITE TEST PATIENTS

PRIVACY LEVEL AVERAGE WHITE INFLUENCE AVERAGE BLACK INFLUENCE MOST HELPFUL ETHNICITY MOST HARMFUL ETHNICITY
NONE 0.29± 2.40 0.71± 1.40 WHITE (MAJORITY) WHITE (MAJORITY)
LOW −0.22± 0.70 −0.03± 0.17 WHITE (MAJORITY) WHITE (MAJORITY)
HIGH −0.11± 3.94 0.03± 1.35 WHITE (MAJORITY) WHITE (MAJORITY)

BLACK TEST PATIENTS

PRIVACY LEVEL AVERAGE WHITE INFLUENCE AVERAGE BLACK INFLUENCE MOST HELPFUL ETHNICITY MOST HARMFUL ETHNICITY
NONE 0.48± 1.39 0.44± 2.19 BLACK (MINORITY) WHITE (MAJORITY)
LOW −0.23± 0.75 −0.03± 0.18 WHITE (MAJORITY) WHITE (MAJORITY)
HIGH −0.40± 4.10 0.12± 1.45 WHITE (MAJORITY) WHITE (MAJORITY)

Table 4: Group influence summary statistics of white and black training patients for all privacy levels for all white and black test patients.
for the black test patients, privacy changes the most helpful group from black patients to the majority white patients and minimizes black
patients’ helpful influence. This needs careful consideration as the use of ethnicity is still being investigated in clinical practice.
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