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Abstract

In this paper we consider the problem of building
Boolean rule sets in disjunctive normal form (DNF),
an interpretable model for binary classification, sub-
ject to fairness constraints. We formulate the prob-
lem as an integer program that maximizes classi-
fication accuracy with explicit constraints on two
different measures of classification parity: equal-
ity of opportunity, and equalized odds. A column
generation framework, with a novel formulation, is
used to efficiently search over exponentially many
possible rules, eliminating the need for heuristic rule
mining. Compared to CART and Logistic Regres-
sion, two interpretable machine learning algorithms,
our method produces interpretable classifiers that
have superior performance with respect to both fair-
ness metrics.

1 Introduction

With the explosion of artificial intelligence in recent years,
automated decision making has begun taking over key deci-
sion making tasks in a variety of areas ranging from finance
to driving. However, with machine learning dictating deci-
sions as important as lending, hiring, and college admissions,
a natural question is whether these algorithms are fair to all
those affected. Recent results have shown machine learning
algorithms to be racially biased in a range of applications rang-
ing from facial identification in picture tagging to predicting
criminal recidivism [24]. Further complicating the problem
is the need for model interpretability in many applications
where machine learning models complement human decision
making, such as criminal justice and medicine. In these appli-
cations transparency is necessary for domain experts to under-
stand, critique and trust machine learning models. With these
dueling objectives in mind, practitioners face the daunting
question of whether it is possible to design machine learning
algorithms that are accurate, fair AND interpretable. This
paper takes one step towards such an algorithm for supervised
binary classification problems using integer programming to
build interpretable rule sets that can explicitly include fairness
constraints.
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We focus on a well-studied interpretable class of rule sets,
Boolean rules in disjunctive normal form (DNF, *OR-of-
ANDs’). For example, a DNF rule set with two rules for
predicting criminal recidivism could be

[(Priors>3) and (Age<45) and (Score Factor = TRUE)|
OR
[(Priors>20) and (Age>45)]

where Priors, Age, and Score Factor are features related
to the defendant. The fewer the rules or conditions in each
rule, the more interpretable the rule set. In contrast to decision
trees [7; 25; 6; 2; 18], and decision lists [26; 23; 27; 3; 22;
28], other interpretable classes of rule sets, the rules within
a DNF rule-set are unordered and have been shown in a user
study to require less effort to understand [21]. Practically,
optimal decision rules have been shown to be more accurate
than heuristic rule set methods [11], while remaining more
computationally tractable than other optimal rule set methods
[15; 6]. To build fair DNF rule sets, we start with the model
in [11] which frames the problem as a large integer program
(IP), generating candidate rules using a column generation
(CG) framework. We keep the objective of the IP the same
and add explicit constraints on fairness to control the level
of acceptable “unfairness*“ among different subgroups. We
also add additional constraints to the model as the objective
function does not guarantee correctness in the presence of
fairness constraints. Our approach also differs from [11] in the
way we solve the pricing problem as we use a very compact
formulation to generate candidate rules which reduces the
computational effort significantly.

2 Fairness Metrics

We start by defining the standard supervised binary classi-
fication problem, where given a training set of n samples
(X;,y;) with labels y; € {0,1} and features X; € {0,1}?
fori € I = {1,...,n}, the goal is to generate a decision
rule d : {0,1}” — {0, 1} that minimizes the expected error
P(d(X) # Y') between the predicted label and the true label
for unseen data. Assuming the data to be binary-valued, as
seen in [11; 15], is not restrictive as numeric features can be
binarized using a sequence of thresholds and the same can be
done for categorical features using one-hot encoding.

Now consider the case when each data-point also has an
associated group (or protected feature) g; € G where G is



a given discrete set. Quantifying fairness is not a straight
forward task in this context and a number of metrics have been
proposed in the fair machine learning literature. One popular
category of fairness metrics is classification party [13; 1; 8;
14; 19; 17; 1; 29; 17] - which ensures that some measure of
prediction error (ex. Type I/II error, accuracy) is equal across
all groups. We focus on two measures of classification party:
Equality of Opportunity and Equalized Odds. Both criteria fit
naturally into the integer programming formulation presented
in Section 3 and have a number of real world applications such
as credit lending and hiring.

Equality of Opportunity: This fairness criterion requires
the false negative rate to be equal across groups by enforcing
the following condition [17]:

P(d(X)=0]Y =1,G =g) =Pd(X)=0]Y =1) (1)

for all g € G. This condition is particularly relevant when
there is a much larger societal cost to false negatives than false
positives, for example in applications such as loan approval or
hiring decisions, see [10; 30].

Equalized odds: A stricter condition on the classifier
is to require that the classification error is equal across all
groups and for both the positive and negative classes within
those groups [17]. To achieve equalized odds, together with
equation (1), the following condition is also enforced:

P(d(X)=1]Y =0,G =g) =Pd(X)=1]Y =0) (2)

forall g € G.

In a practical setting, it is unrealistic to expect to find classi-
fiers that can satisfy the above criteria exactly and therefore
one needs to consider how much these conditions are violated
as a measure of fairness. For example, in the context of equal-
ity of opportunity, the maximum disparity among groups can
be used to measure the unfairness of a given classifier d as
follows:

A(d) = max |P(d(X)=0]Y =1,G = g)—
9,9'€G

P(d(X) =0]Y =1,G = ¢)|.

When training the classifier d, one can then use A(d) in the
objective function as a penalty term or can explicitly require a
constraint of the form A(d) < e to be satisfied by d. We focus
on the latter case as it allows for explicit control over tolerable
unfairness. A more precise discussion of how this constraint
is integrated is included in Section 3.

3 C(lassification Framework: Boolean
Decision Rule Sets

We now introduce our method to construct optimal DNF rule-
sets for binary classification subject to fairness constraints.
Note that when the input data is binary-valued, a DNF-rule set
simply corresponds to checking whether a subset of features
satisfies a specific combination of Os and 1s. By ensuring
that the data also includes the complement of every feature,
a DNF-rule set simply checks if a subset of features are all
1 for a given data point. Consequently, if there are p binary
features there can only be a finite number of (2P — 2) possible

decision rules. Therefore, in theory, it is possible to enumerate
all possible rules and then formulate a large integer program
(IP) to select a small subset of them to minimize error on the
training data under explicit fairness constraints. However from
a practical perspective, it is clearly not possible to solve an
exponential size IP, so instead we solve the continuous relax-
ation (LP) of the IP using column generation. Consequently,
instead of enumerating all possible rules, we only enumerate
those that can potentially improve classification error. Sim-
ilar to [11] the objective of the IP is to minimize Hamming
loss, a proxy for classification error that counts the number
of rules that needs to be changed to classify a point correctly.
From a practical perspective, Hamming loss leads to smaller
IP formulations that can be solved more efficiently.

3.1 Integer Program Formulation

Let K denote the set of all possible DNF rules and 1C; C K
be the set of rules met by data point i € I. Let ¢ denote
the complexity of rule k£ € K which is defined as a fixed cost
of 1 plus the number of conditions in the rule. Assume that
the data points are partitioned into two sets based on their
labels: P={iel:y; =1}, and Z={i € I:y; = 0}.
Additionally, for each group g € G we denote the data points
that have the protected feature g with G, = {i € I : g; = g}
and let P, = PN G, and Z; = Z N G,. For simplicity,
we describe the constraints assuming G = {1, 2} and note
that extending it to multiple groups is straightforward. Let
wy, € {0, 1} be a variable indicating if rule & € K is selected;
¢; € {0,1} be a variable indicating if data point i € P is
misclassified; and C' be a parameter denoting the maximum
complexity allowed. With this notation in mind, the problem
of identifying the optimal rule set subject to constraints on
equality of opportunity becomes:

i€P i€EZ kEK;
st G+ > w1 i€P &)
ke,
CGi+ Y 2w, <C i€P (5
keK;
Z cowy < C (6)
ke
we {0,138, ¢efo, 3”1 (7)
1 1
=D G- Y G <a ®)
|P1| i€P1 |7)2| 1E€EP2
1 1
Y Gm Y Gi<a ©)
el i€Po [P1] iePs

We denote this integer program the Master Integer Program
(MIP), and it’s associated linear relaxation the Master LP
(MLP) (obtained by dropping the integrality constraint). Any
feasible solution (1w, ¢) to (4)-(7) corresponds to arule set S =
{k € K : wy, = 1}. Note that the objective is the Hamming
loss where the first term counts the number of misclassified
data-points (; for ¢ € P, whereas the second term adds up



the total number of selected rules satisfied by data-points %
for each ¢ € Z. Constraint (4) identifies false negatives by
forcing (; to take value 1 if no rule that is satisfied by the
point ¢ € P is selected. Within the constraint we multiply wy,
by 2 as it is the minimum complexity for a rule. Similarly,
constraint (5) ensures that (; can only take a value of 1 if no
rules satisfied by ¢ € P are selected. Here we use the fact that
cp > 2 for all k € K. Constraint (6) provides the bound on
complexity of the final rule set. Finally, constraints (8) and
(9) bound the maximum allowed unfairness, denoted by A in
section 2 by a specified constant €; > 0. If €; is chosen to be
0, then the fairness constraint is imposed strictly. Depending
on the application, €; can also be larger than 0, in which case
a prescribed level of unfairness is tolerated.

Hamming Equalized Odds (HEO): We next extend the
notion of equalized odds to the hamming loss setting (hence-
forth denoted hamming equalized odds). Specifically, to bound
the disparity in false positive rate we bound the disparity in
the hamming loss terms for the negative class. To that end,
together with constraints (8) and (9) , we include the following
constraints in the formulation:

1 1
@Z Zwk—@z Y owp<e  (10)

€21 ke; 1€22 kEK;
1 1
— E E Wy — —— E E wy < €, (1)
|22 . , 21| & -
i€ 2, heKs i€ 2, keKs

where €5 > 0 is a given constant. The tolerance parameter
€2 can be set equal to €; or it can be chosen separately. Note
that we normalize the hamming loss terms to account for the
difference in group sizes and positive response rates between
groups.

3.2 Column Generation Framework

To solve the LP relaxation of the MIP, called the MLP, using
the column generation framework [9], we start with a small

subset K C K of all possible rules and solve an LP restricted
to the variables associated with these rules only. Once this
small LP is solved, we use its optimal dual solution to identify
a missing variable (rule) that has a negative reduced cost [5].
The search for such a variable is called the pricing problem
and, in our case, this can be done by solving a separate integer
program. If a variable with a negative reduced cost is found,
then K is augmented with the associated rule and the LP is
solved again and the this process is repeated until no such
variables can be found. .

Given a possibly empty subset of rules K C I, let the
restricted MLP, defined by (3)-(6), (8)-(9) and denoted by
RMLP, be the restriction of MLP to the rules in K. Let
(i, @, A, 7, ¥?) be an optimal dual solution to RMLP, where
variables p, a, A > 0 are associated with constraints (4), (5),
and (6), respectively. Variables v* and 72 are associated with
fairness constraints (8) and (9). We now formulate an integer
program to find a & € K with the minimum reduced cost jy.
Remember that a decision rule corresponds to a subset of the
binary features .J and classifies a data point with a positive re-
sponse if the point has all the features selected by the rule. Let
variable z; € {0,1} for j € J denote if the rule has feature j

and let variable ¢; € {0, 1} for ¢ € I denote if the rule mis-
classifies sample <. Using these variables, the complexity of
arule can be computed as (1 + >, ; z;). We now construct
the full pricing problem with the reduced cost in the objective:

Zeg = minz 0; + 2(2% — i) + A1+ Z ;)

i€z i€EP jeJ
st. D6+ z <D iel (12)
JES;
Si+ > z>1 iel" (13)
JES;:
> % <D (14)
jeJ
z e {0,1}V, 5 € {0,1}/7! (15)

where the set I~ C I contains the indices of §; variables
that have a negative coefficient in the objective, and IT =
I\ I~. The objective is the reduced cost for the generated
rule. Note that variable wy, does not appear in constraints
(8) or (9) in RMLP and consequently the objective does not
involve variables y! or 2. Also note that constraints (12) and
(13) to ensure that d; accurately reflects whether the new rule
classifies data point 7 with a positive label, and constraint (14)
puts an explicit bound on the complexity of any rule using the
parameter D. This individual rule complexity constraint can
be set independently of C' in the master problem or simply be
setto C' — 1.

Hamming Equalized Odds: In this case the RMLP
is defined by (3)-(6), (8)-(11) and note that unlike (8) and
(9), constraints (10) and (11) do involve variables w;,. Let
(@, A, v, v2, 72, 7*) be an optimal dual solution to RMLP,
where variables 7> and ~* are associated with fairness con-
straints (10) and (11), respectively. Using this dual solution,
we update the objective to be:

. Y3 — 74 Y4 — 73
Zeg = min (1+ ) 5+ (1+ ) 0
’ z 2 z) 2

+) (200 — )i A AL+ z)

ieP jeJ

4 Experiments

We implemented the fair column generation algorithm (de-
noted FairCG) using the Python interface of Gurobi [16] to
solve the linear and integer programs. To solve the MLP we
use a barrier interior point method with the default crossover
parameter. For the pricing problem we use the default settings,
and return all solutions generated during the algorithm’s run
with negative reduced costs. For each of the experiments we
set a time limit of 5 minutes for the overall training, and a
limit of 45 seconds to solve the pricing problem.

To benchmark the performance of our algorithm, we tested
it on three fair machine learning datasets: default [12], adult
[12], and compas [4]. Figure 1 (a) shows the trade-off be-
tween the fairness constraint for equality of opportunity when
training and the realized false negative rate. As we relax the



Table 1: Mean Accuracy and Fairness Results for Equality of Opportunity

Adult Compas Default

Accuracy  Fairness  Accuracy Fairness  Accuracy Fairness

. Best Acc 82.9(0.2) 9.4(0.4) 682(1.2) 245(5.3) 82.0(0.6) 0.5(1.2)
Fair CG  Best Fair 78.4 (0.4) 0.3(0.3) 53.0(1.6) 0(0) 77.9(0.4)  0(0)
Best Acc  85.5(0.3) 159(5.1) 68.1(1.9) 25.6(6.2) 82.1(1.5) 3.0(2.7)

CART  BestFair 85.4(0.5) 84(4.3) 658(23) 21.3(6.1) 82.0(1.4) 25(1.9)
Best Acc  80.1 (1.1) 7.06(8.0) 68.1(1.6) 27.1(7.6) 77.9(1.7)  0(0)

LR Best Fair  79.8 (0.6) 3.6(3.2) 68.1(1.6) 27.1(7.6) 77.9(1.7) 0(0)

Table 2: Mean Accuracy and Fairness Results for Hamming Equalized Odds

. Tuned for Acc  83.1(0.6) 7.9(0.4) 67.5(1.7) 245(5.3) 81.9(0.6) 0.9(1.1)
Fair CG  Tuned for Fair  76.0 (0.5) 0 (0) 53.0 (1.7) 0(0) 81.9(0.6)  0(0)
Tuned for Acc  85.5(0.3) 7.2(0.5) 68.1(1.9) 25.6(6.2) 82.1(1.5) 3.0(2.7)

CART  Tuned for Fair 85.3(0.5) 6.8(0.5) 66.8(2.6) 16.8(54) 82.0(1.3) 1.1(0.6)
Tuned for Acc  80.1 (1.1) 7.06(8.0) 68.1(1.6) 27.1(7.6) 77.9(1.7)  0(0)

LR Tuned for Fair  79.8 (0.6) 1.0(0.5) 67.5(1.2) 19.1(45) 77.9(1.7)  0(0)

fairness constraint both the realized train and test set fairness
decreases (i.e. the gap between groups grows). This dispro-
portionately impacts the false negative rate for the first group,
underscoring the importance of finding fair classifiers. Figure
1 (b) shows that increasing rule set complexity leads to lower
false negative rates across groups, underscoring the inherent
trade-off in interpretability and fairness as discussed in [20].
Results for HEO and other data-sets show similar trends.

We also compared the performance of our algorithm with
two other interpretable binary classification models, CART
and Logistic Regression. For all three models we varied the
hyper-parameters, performing 10-fold cross validation for each
parameter, to generate the accuracy fairness trade-offs. These
models used the real-valued feature data. Figure 1 (c) plots
the efficient frontier for accuracy-fairness for CART, Logis-
tic Regression as well as our own algorithm for the compas
dataset. Tables 1 and 2 summarize each algorithm’s perfor-
mance when tuned for accuracy and fairness separately. For
each dataset we report the standard deviation in parenthesis.
While CART is able to achieve superior predictive accuracy
on some datasets, our algorithm is able to achieve compara-
ble accuracy under much stricter fairness constraints. This
shows that our framework is able to build interpretable models
that have competitive accuracy and substantially improved
fairness.

5 Conclusion

While many practitioners have explored the problem of build-
ing fair or interpretable classification models, few have looked
at the increasingly important problem of creating fair and in-
terpretable models. In this work we begin bridging that gap,
using an integer programming approach. Preliminary empir-
ical results show that our algorithm can achieve competitive
accuracy on standard fair ML datasets with superior fairness
when compared against simple interpretable models.

compas

0.0 0.1 0.2 0.3 0.4 0.5

Equality of Opportunity Gap Target ¢

0.600

[

0.550

0.5

0.500

0.4

False Negative Rate

10 2 14 16 18 20
Complexity Target C

compas

Accuracy

0.00 0.05 0.10 0.15 0.20 0.25

Equality of Opportunity Gap Observed

Figure 1: Impact of the equality of opportunity fairness constraint
(a) and complexity constraint (b) on false negative rate for the com-
pas dataset. (c) Performance of FairCG benchmarked against other
interpretable models on compas dataset. For all plots, if group is
unspecified line is for all data.
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