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Abstract
We present a new algorithm and theoretical results for
solving Multi-action Multi-armed Restless Bandits, an
important but insufficiently studied generalization of
traditional Multi-armed Restless Bandits (MARBs).
Multi-action MARBs are capable of handling critical
problem complexities often present in AI4SG domains
like anti-poaching and healthcare, but that traditional
MARBs fail to capture. Limited previous work on
Multi-action MARBs has only been specialized to
sub-problems. Here we derive BLam, an algorithm
for general Multi-action MARBs using Lagrangian
relaxation techniques and convexity to quickly
converge to good policies via bound optimization. We
also provide experimental results comparing BLam
to baselines on a simulated distributions motivated
by a real-world community health intervention task,
achieving up to five-times speedups over more general
methods without sacrificing performance.

1 Introduction
MARBs have been studied extensively for solving a diverse set
of problems including machine replacement [Glazebrook et al.,
2006; Ruiz-Hernández et al., 2020], anti-poaching patrol schedul-
ing [Qian et al., 2016], and healthcare [Lee et al., 2019; Mate et
al., 2020]. The planner must select k out ofN arms on which to
act for each ofL rounds in a way that maximizes reward produced
by the arms. However, the reward on each arm depends on the
action as well as an internal state that evolves according to an in-
dependent two-action Markov Decision Process (MDP), making
the problem PSPACE-hard [Papadimitriou and Tsitsiklis, 1999].

Despite their difficulty, a critical limitation of MARB
frameworks is they only allow for 2 actions: act or not act. This is
restrictive for many real-world cases where planners have various
actions at their disposal with degrees of cost and effect. E.g., in
anti-poaching, the planner could allocate different levels of patrol
effort to different targets, where more effort has higher cost and
higher deterrent effect on poachers [Nguyen et al., 2013]. In
public health, a community health worker could have several
options for intervening with a patient, such as calling, visiting
in person, or escalating patients to a more intense treatment
[WHO and others, 2018]. Traditional MARBs cannot model
these complexities, restricting planners to a world where their
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Figure 1: Multi-action MARB: one planner, many stateful agents, daily
budget, many actions with varied costs/effects.

only choices are to, e.g., call or not call. Rather, the planner must
optimize over all the tools in their toolbelt simultaneously (Fig. 1).

To model such problems, we consider an under-examined
generalization of MARBs that allow for multiple action types per
arm, which we call Multi-Action MARBs ((MA)2RBs). Previous
work has considered extending the classical MARB notion of
indexability and corresponding index policies to (MA)2RBs
[Glazebrook et al., 2011]. In both traditional and Multi-action
MARBs, index policies are desirable because: (1) they decompose
the problem in a manner that scales well and (2) when indexability
holds, they are asymptotically optimal [Weber and Weiss, 1990;
Hodge and Glazebrook, 2015]. However, both deriving index poli-
cies and verifying indexability is notoriously difficult, and largely
requires special problem structure [Glazebrook et al., 2006;
Glazebrook et al., 2011]. Our goal is thus to develop fast,
well-performing policies for a broader class of (MA)2RBs where
no structure is assumed and indexability cannot be readily verified.
We bypass the task of deriving index policies by taking a more
general Lagrangian relaxation approach that leads to an auxiliary
problem of computing a policy that minimizes the Lagrange
bound. Computing this “Lagrange policy” is desirable because
it recovers the index policies when they exist, but is readily
computable regardless of problem structure. Our contributions:
(i) Bound optimization algorithm: We develop BLam, an itera-
tive bound optimization method for computing the Lagrange pol-
icy. BLam uses problem convexity to derive progressively tighter
upper and lower bounds on the Lagrange policy via a series of
small LPs. We provide key technical results that prove this method
converges to the policy that minimizes the Lagrange bound.
(ii) Experimental evaluation: We compare our algorithms to



baselines on a synthetic distribution motivated by a real-world
public health challenge. Our algorithms scale up to five
times better than a more general baseline without sacrificing
performance, and readily adapt to each problem with minimal
tuning. Thus our work newly makes available multiple avenues
for computing well-performing policies on new (MA)2RBs at
scale, without the need for the user to first arduously derive a
problem-specific index policy.

2 Related Work
Previous work extends the traditional MARB notion of indexa-
bility to (MA)2RBs [Glazebrook et al., 2011; Hodge and Glaze-
brook, 2015]. However, their analysis is restricted to a subclass of
(MA)2RBs with special monotonic structure, whereas we build
algorithms for general (MA)2RBs. “Superprocesses” are an alter-
native multi-action extension where a primary planner distributes
a limited set of sub-planners who act on arms without constraint
[Zayas-Caban et al., 2019; Verloop and others, 2016]. This struc-
ture does not generally apply to (MA)2RBs since they do not
constrain the number of agents that can be acted on each round.
Also related are Weakly Coupled MDPs (WCMDPs) in which a
planner operates N independent MDPs subject to a set of arbitrary
constraints over actions. [Meuleau et al., 1998] derive methods for
handling “global” resource constraints over all rounds, whereas
we address round-by-round constraints. [Hawkins, 2003], the
main baseline we compare against, derive a Lagrangian relaxation
on the general form of a WCMDP and give an LP for mini-
mizing the Lagrange bound. In contrast, we leverage the single
constraint nature of (MA)2RBs to greatly speed up the com-
putation of the Lagrange bound compared to [Hawkins, 2003].
Finally, our work is related to a large body of work developing La-
grangian methods for solving traditional MARBs [Whittle, 1988;
Glazebrook et al., 2006; Nino-Mora, 2001; Bertsimas and Niño-
Mora, 2000]. We generalize these settings to allow for multiple
actions. Moreover, the methods we develop here reduce in the
binary action case to the widely-used, well-performing, Whittle
index policy [Whittle, 1988; Glazebrook et al., 2006].

3 Preliminaries
A (MA)2RB consists ofN arms, each associated with an MDP
{S,A,r,T,β} which consists of a set of states S, actions A, a
bounded reward function r :S→R, transition function T , where
T(s,a,s′) is the probability of transitioning to state s′ when action
a is taken from state s, and a discount factor β∈ [0,1). An MDP
policy π :S→A maps states to actions. Each arm also has an
action cost vectorC∈R|A|. W.l.o.g., we assume that the elements
cj of C are ordered ascending. Also, we set c0=0 so an arm can
be “not played” at no cost. Each round, the planner must select one
action for each of theN arms such that the sum cost of all actions
do not exceed a budgetB. Let s=[s0,s1,...,sN−1] represent the
vector of all arm states and let X ∈{0,1}N×|A| with elements
denoted xi,j be the action decision matrix. The planner’s goal can
be represented by the following constrained Bellman equation

J(s)=max
X
{
N−1∑
i=0

ri(si)+βE[J(s′)|s,X]|
N−1∑
i=0

|A|−1∑
j=0

xi,jcj≤B}

(1)

While Eq. 1 could be solved directly via value iteration,
J(s) ∈ SN , and the number of feasible actions over which to
take the max for each J(s) is also exponential inN , making this
approach intractable for non-trivial problem sizes. The key insight,
though, is that the value functions and actions are only coupled
due to the shared budget constraint over all arms. Therefore to
simplify the problem, we relax the budget constraint and add it as
a penalty to the objective with a Lagrange multiplier λ. This gives
a relaxed but tractable value function J(s,λ) which upper bounds
J(s) and can be solved with the LP (proof in [Hawkins, 2003]):

J(s,λ)= min
V i(si,λ),λ

λB

1−β
+

N−1∑
i=0

µi(si)V i(si,λ)

s.t. V i(si,λ)≥ri(si)−λcj+β
∑
si′

T(si,aij,s
i′)V i(si′,λ)

∀i∈{0,...,N−1}, ∀si∈S, ∀aj∈A, and λ≥0

(2)

Where µi(si)=1 if si is the start state for arm i and is 0 otherwise.
Intuitively, we want to derive a policy from the V is that provide
the tightest bound on J(s). Clearly one can directly solve Eq. 2
using any LP solver, but this scales poorly. The key to our ap-
proach will be separating the computation of the λ that minimizes
Eq. 2, henceforth λmin, and the corresponding V is that solve
Eq. 2 in a way that provides vast speedups.

4 Bound Optimization With BLam
BLam is our exact approach to computing the Lagrange policy.
We first give an overview, noting theorems where relevant that are
derived in the next section. The main idea is rooted in the form
of the functions V i(si,λ) in Eq. 2, visualized in blue in Fig. 2.
To exactly compute Eq. 2 requires adding |S||A| constraints and
|S| variables to the LP for each of the N arms’ value functions
V i(si,λ). Instead, we will build special approximations to each
V i(si,λ) that are represented in the LP each with just one variable
and a constant number of constraints, achieving vast speedups.
The approximations are constructed by rapidly testing for the
slope of V i(si,λ) at various test points λtest using value iteration,
then creating a piecewise linear combination of the slopes. The
key is we construct two special types of approximations: one that
upper bounds the slope of V i(si,λ) and one that lower bounds
it, shown in Fig. 2 in green and red, respectively.

We then use the insight that the V i(si,λ) in Eq. 2, are indeed
convex decreasing functions of λ (Prop. 4.1), implying that
Eq. 2 is minimized when the combined per-unit decrease to the
objective brought by the convex V i(si,λ) functions is equal to or
less than the constant per-unit increase to the objective brought by
λB
1−β . In other words, λmin is the point where the negative sum
of slopes of V i(si,λ) is equal to B

1−β (Prop. 4.2). Crucially, if we
replace any V i(si,λ) with a convex function with strictly more
negative slope (i.e., a lower bound), the value of λ at which the
negative sum of slopes equals B

1−β could only increase, giving
an upper bound on λmin. The converse also holds, i.e., replacing
with upper bound convex functions gives a lower bound on λmin
(Thm. 4.3). This constitutes the core tradeoff in our approach: the
more V i(si,λ) are replaced with approximations in the LP, the
faster it will execute, but the looser the bounds will be. We handle



this by first “bounding out”, i.e., replacing V i(si,λ) with its
approximation, all but a small numberK processes to get loose
bounds on λmin rapidly. We then iteratively add back V i(si,λ)s
to the LP until the bounds on λmin are with a pre-specified ε.
With minimal tuning, the test points can be set to create tight
enough bounds that BLam will converge after only a small
number of iterations, leading to great speed increases.

The algorithm proceeds in two parts. In BLAMPRECOMPUTE,
given in Alg. 3 (appendix), we compute the upper and lower
bound approximations of of the arms, passing in the MDP
parameters of the arms, along with a list G of points λtest at
which to approximate the slopes. VI in Alg. 3 denotes value
iteration and U/L will contain the pieces of the piecewise
upper and lower bounds for V i(si,λ) for all arms and states.
BLAMPRECOMPUTE runs once at the beginning of simulation.
BLAM, given in Alg. 1, runs on each round of the (MA)2RB
to compute λmin for the current set of arm states s (line 2 of
Alg. 1 selects the bounding functions for the current state of
each arm). Using the piecewise bounded versions of V i(si,λ),
it constructs a special LP, BLAMLP, given in Eq.3 below, that
produces upper and lower bounds on λmin by replacing V i(si,λ)
with their bounded counterparts. It loops, replacing successively
more V i(si,λ) in lieu of their bounded forms, until the resulting
bounds on λmin are within ε. BLAM terminates by running one
final value iteration with the appropriate λmin, the result of which
solves Eq. 2 without constructing or solving the full LP, leading
to vast speed ups. The resulting value functions will be used to
construct a final policy via a modified knapsack (Appendix 10).

Algorithm 1: BLam
Data: T,R,C,N,B,β, s,G, U, L, ε, kStep

1 /* Only
need bounds for current arm states */

2 GetCoeffsForState(U, L, s);
3 Sort(U, L, T ,R);
4 st = PickStart(L,

√
N);

5 for k∈ [st, st+kStep, ...,N ] do
6 λu=BLamLP(T [:k],R[:k],B,C,β,s,L);
7 λ`=BLamLP(T [:k],R[:k],B,C,β,s,U);
8 if λu−λ`≤ε then break ;
9 V (i,s)=[]

// Nx|S| array to hold value functions
10 λmin=(λu−λ`)/2;
11 for i=1,...,N do
12 Rλ=R[i];
13 for x∈1,...,|C| do subtract action costs
14 Rλ[x]−=λmin∗C[x];
15 V [i]=VI(T [i],Rλ,β);
16 return V

4.1 BLam: Derivation
To bound the slope of V i(si,λ), we rely on it being convex.
Proposition 4.1. V i(si,λ) is convex decreasing in λ, and as
λ→∞, dV

i(si,λ)
dλ →0

This follows directly from Eq. 2. Let λu (λ`) correspond to the
λ which solves Eq. 2 when V i(si,λ) are replaced in the objective

𝜆
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Test point LB UB Actual

𝜆

V2(s, 𝜆)

Figure 2: Constructing bounds on the slope of V i(si,λ) for two different
arms with three test points. Note: bounds are with respect to the slope,
not the value of the function.

by L (U). Note that the lower bound functions L will be used to
derive upper bounds on the value of λmin and vice versa. Next,
we give a helpful intermediate result (proof in appendix).

Proposition 4.2. The optimal solution to Eq. 2 will be found
at the value of λ in which the negative sums of the slopes of
V i(si,λ) w.r.t. λ become less than or equal to B

1−β .

We now give our main result (proof in appendix):

Theorem 4.3. λ`≤λmin≤λu
We can build U and L by testing for the slope of V i(si,λ) at

test pointsλtest by calculating (V i(si,λ=λtest+ε0)−V i(si,λ=
λtest))/ε0 where both V i(si, λ)s can be quickly computed
via value iteration and ε0 ≈ 0. Let Gi represent the set of test
points for a given arm. At minimum,Gi must include λtest=0
since proposition 4.1 implies that the minimum slope of any
V i occurs at λ = 0. After computing slopes at test points, U
and L are constructed via standard linear equations (Alg 2 in
the Appendix). Let Ui(Gik,m) and Ui(Gik,b) be the slopes and
intercepts, respectively, for each piece k of the upper bounding
function Ui for arm i. Define Li(Gik,∗) similarly.

Now, we can compute λu and λ`. To start, we chooseK arms
to include in Eq. 2 in their V i(si,λ) form, while the otherN−K
arms will be replaced by their bounded counterparts. To compute
λu, we replace theN−K arms with L to get the following LP:

Jλu(s,λ)= min
V i,λ,zj

λB

1−β
+

K∑
i=0

µi(si)V i(si,λ)+

N−K∑
j

zj

s.t. V i(si,λ)≥ri(si)−λcj+β
∑
si′

T(si,aij,s
i′)V i(si′,λ)

∀i∈{0,...,K}, ∀si∈S, ∀aj∈A (3)

zj≥Lj(Gjk,m)∗λ+Lj(Gjk,b)
∀k∈{0,...,|Gj|}, ∀j∈{0,...,N−K}

λ≥0

where zj are auxiliary variables to represent the piecewise linear
convex functions Lj via the |Gj| constraints on zj. To compute
λ` we construct a similar LP using Ui(Gik,∗). To choose the
initialK arms, we sort arms by the slope of their last line segment,
then set K such that the negative sum of slopes of the last line
segments of the remaining N−K arms is less than B/(1−β)
to ensure the LP is feasible. More details are given in appendix
9. Once λmin is determined, we use value iteration to rapidly
solve Eq. 2, the result of which we use to derive feasible policies
via a modified knapsack (Appendix 10).
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Figure 3: Rewards (top row) and runtimes (bottom row) on the health care dataset with budget 0.1N . Columns represent d=3,4,5 adherence levels,
respectively. At all values of ε, BLam significantly outperforms VfNc. Further, the Hawkins LP scales quadratically in the number of states on each
arm, while BLam identifies problem structure that keep the underlying LPs small, making speedups more dramatic as the problem size increases.

5 Experiments

We compare our methods against the following baselines:
Nobody: Take a0 which has no cost on every arm; VfNc: Solves
Eq. 2 with λ=0, effectively ignoring all future constraints, then
follows Section 10; Hawkins: Solves Eq. 2 directly using an LP
solver, then follows Section 10. We also include several versions
of BLam using various stopping criterion ε (i.e., BLam{ε}
in plots). We compare the discounted sum of rewards, using
discount factor 0.95, averaged over all arms N , over L = 40
rounds. All results are averaged over 25 simulations.

We test our algorithm on a simulation motivated by tuberculosis
care in India. In this real-world setting, a single community health
worker manages up to 200 patients throughout the course of their
6-month antibiotic regimen, monitoring and encouraging patients
to take their daily medications via calls, home visits or escalations,
subject to a daily time budget. We model patient adherence via
a state tuple: (adherence level, treatment phase, day of treatment),
which captures the patient’s previous d days of adherence, the
”phase” of treatment (patients adhere less in later phases), and
time. A dataset of daily TB adherence in Mumbai [Killian et al.,
2019] showed patients followed four distinct modes: (1) High
adherence: adhere daily regardless of health worker action. (2)
Low adherence: Very low adherence regardless of health worker
action. (3) Receptive patients: Irregular adherence but can
benefit from intervention. (4) Dropout patients: Like receptive
patients but have probability of dropping out.

We implement these patient types in our simulation in the
following mix respectively: 0.64, 0.01, 0.175, 0.175, matching
the number of High and Low adherence patients observed in the
data, and splitting the remaining types. We run experiments with

d= 3,4,5, with worker actions as follows: (1) Call: mild boost
to adherence (c=1). (2) Visit: good boost to adherence (c=2).
(3) Escalate: Patient returns to the maximum adherence state.
Rewards are defined as (adherence level)/d.

For BLam we report results using test points Gi =
{0,0.1,0.2,0.5}, though we found that, in general, most sets of 3 or
4 evenly spaced points worked well. Fig. 3 shows the performance
and runtime for the dataset with budget of 0.1N for d= 3,4,5.
With such a small budget, the tradeoff between individual actions
is important. We see that all versions of BLam significantly outper-
form VfNc and, crucially, scale much better than Hawkins. In fact,
as the number of states in the underlying problem grows the speed
ups become even more dramatic ranging from a 2 times speedup
with d=3 to a 5 times speedup with d=5. This is because the
Hawkins LP scales quadratically in the number of states of each
arm (complexity for Hawkins and BLam given in Appendix 11),
while the BLam algorithms are able to identify problem structure
that keep the underlying LPs small with its bounding techniques,
making speedups more dramatic as the problem size increases.
These results demonstrate the exemplary ability for our approach
to scale well without sacrificing performance on a dataset whose
technical structure has not been established a priori.

6 Conclusion

Our work makes available well-performing policies for
(MA)2RBs at scale. Our algorithm offers vast speedups and
can be readily adapted to new problems without first arduously
deriving a problem-specific index policy, both of which are key
benefits when approaching understudied AI4SG domains.



References
[Bertsimas and Niño-Mora, 2000] Dimitris Bertsimas and José
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Appendix

Algorithm 2: BuildBounds
Data: D,G,N

1 U =
[] ; // list of dicts for upper bound pieces

2 L =
[] ; // list of dicts for lower bound pieces

3 for i∈0,...,N−1 do
4 /* Computing

upper bounds, start from back */
5 j= |G[i]|−1;
6 U[i,j][‘m’]=0;

// last slope always 0 for LB
7 U[i,j][‘b’]=0;

// last intercept is arbitrary
8 λtest=G[i,j];
9 /* set up the next line: y=mx+b */

10 y=U[i,j][‘m’]∗λtest+U[i,j][‘b’];
11 for j∈|G[i]|−2,...,0 do
12 U[i,j][‘m’]=D[i,j+1];
13 /* b=y-mx */
14 U[i,j][‘b’]=y−U[i,j][‘m’]∗λtest;
15 λtest=G[i,j];
16 /* set up the next line: y=mx+b */
17 y=U[i,j][‘m’]∗λtest+U[i,j][‘b’];
18 /* Computing

lower bounds, start from front */
19 y=0;
20 λtest=G[i,0];
21 for j∈0,...,|G[i]|−1 do
22 L[i,j][‘m’]=D[i,j];
23 /* b=y-mx */
24 L[i,j][‘b’]=y−L[i,j][‘m’]∗λtest;
25 /* set up the next line: y=mx+b */
26 y=L[i,j][‘m’]∗G[i,j+1]+L[i,j][‘b’];
27 return U,L

7 Proof of Prop 4.2
Proposition 7.1. The optimal solution to Eq. 2 will be found
at the value of λ in which the negative sums of the slopes of
V i(si,λ) w.r.t. λ become less than or equal to B

1−β .

Proof. Assume λ∗ corresponds to an optimal solution to Eq. 2
and the negative sums of the slopes of convex decreasing V i(si,λ)
are greater than B

1−β . Then λ∗ can be increased by ε and the
objective value would decrease, i.e., J(s,λ∗ + ε) < J(s,λ∗)
giving a contradiction.

8 Proof of Thm. 4.3
We now can prove our main result:
Theorem 8.1. λ`≤λmin≤λu
Proof. The proof is best seen by considering λmin which solves
J(s,λ), i.e., Eq. 2. We start with λmin≤λu: Let V denote the set

Algorithm 3: BLamPrecompute
Data: T,R,C,N,G,β

1 D=[] ; // hold slopes at each arm test point
2 ε0=1e-3;
3 for i=1,...,N do
4 for j=1,...,|G[i]| do
5 λtest=G[i,j];
6 Rλ,Rλ+ε0 =R[i];
7 for x∈1,...,|C| do subtract action costs
8 Rλ[x]−=λtest∗C[x];
9 Rλ+ε0[x]−=(λtest+ε0)∗C[x];

10 D[i,j] = (VI(T [i],Rλ+ε0,β) - VI(T [i],Rλ,β))/ε0
11 U, L = BuildBounds(D);
12 return U, L

of V i(si,λ) in the objective of Eq. 2. Further, let Vb denote the
set of V i(si,λ) which will be replaced by Lb⊂L. Now replace
all Vb with their corresponding Lb, name this new LP Jλu(s,λ)
and name its optimal solution λu. By definition, at all values of
λ, the slope of V i(si,λ) is greater than the slope of Lb. Thus, at
λmin, the negative sums of the slopes of V i∈V\Vb plus Lb is
weakly greater than the negative sums of the slopes of V i∈V. By
Prop. 4.2, we must have that Jλu(s,λ)≤J(s,λ), and respectively
λu≥λmin.
λmin≥λl: The proof follows similarly.

9 BLam: Choosing first K arms
One important choice is in selecting the firstK arms. Intuitively,
the best V i(si,λ) to include in Eq. 3 are those with the loosest
bounds. One proxy for looseness is the slope of the last segment,
i.e., the steeper the slope, the looser the bound, since we know the
slope of all V i(si,λ) go to 0 eventually (Prop. 4.1). Therefore, we
first sort arms in ascending order by this criteria (line 3 in Alg. 1).
To setK, we note that Prop. 4.2 implies that the negative sum of
slopes of V i(si,λ) andLi must be less than or equal toB/(1−β)
for some value of λ to find a solution. Since Li are convex de-
creasing, if the negative sum of slopes of all the trailing segments
of Li are greater thanB/(1−β), then the LP will be unbounded.
Thus, to guarantee the existence of a bounded solution, we set
K to pick the first K arms in slope sorted order, such that the
negative sum of slopes of all the trailing segments of Li is less
thanB/(1−β). We then setK=max(K,

√
N) (line 4 Alg. 1).

Once λu and λ` are computed once, we iterate to includeKstep

more arms in the LP such thatK+=Kstep then repeat until the
algorithm converges to within a difference ε. A straightforward
induction argument shows that as K grows (and the set of
bounded arms shrinks), the bounds become progressively tighter
and are guaranteed to be exact when K = N . Once λmin is
determined, we use value iteration to rapidly solve Eq. 2, the result
of which we will use to derive feasible policies in Section 10.

10 Computing a Policy
Once λmin is finalized, and the resulting value functions from
Eq. 2 have been computed, we use them to compute the one-step
greedy policy implied by the bound. To do this, we compute
the action-value function,Q, which captures the long term value



for acting in a given state in each arm. We then choose actions
by solving a modified knapsack where Qi(si,a,λmin) are the
values subject to their respective action costs, the budget B,
and a constraint that ensures only one action is taken per arm.
The knapsack LP is given next, followed by an algorithm for
computingQi(si,a,λmin) from value functions.

max
X

N−1∑
i=0

M−1∑
j=0

xi,jQ
i(si,aj,λmin) (4)

s.t.
N−1∑
i=0

M−1∑
j=0

xi,jcj≤B (5)

M−1∑
j=0

xi,j=1 ∀i∈0...N−1 (6)

(7)

Qi(si,aj,λmin) is the action value function associated with arm i.
Note thatQi(si,aj,λmin) can be readily computed using the value
functions returned by BLam and SampleLam via this algorithm:

Algorithm 4: Compute Action Value Function
Data: V,T,R,C,λ,β

1 Q = [] ; // hold the action value function
2 for s∈S do
3 for a∈A do
4 Q[s,a]=

R[s]−λ∗C[a]+β∗
∑
s′∈SV [s′]∗T [s,a,s′]

5 return Q

11 BLam/Hawkins Computational Complexity
In BLAMPRECOMPUTE, BLam computes Ui(Gik, ∗) and
Li(Gik,∗) for all V i(si,λ), which requires two runs of value
iteration for each arm for each test point Gik. Assuming all
arms use the same number of test points, states and actions, this
scales asO(NGiV I(|S|,|A|)) where V I() is the computational
complexity of value iteration. While an exact complexity of value
iteration is elusive, it is known to be much faster than the LP
formulation [Puterman, 2014]. Thus, its complexity will be dom-
inated by the LP solves that occur in BLAM— the same applies
for the value iteration that runs at the end of BLAM each round.

To compute a policy for each round, BLAM constructs Eq. 3 as
an LP which hasK|S|+(N−K) variables,K|S||A| constraints
with |S| terms, and (N − K)Gi constraints with two terms.
Although the constraints associated with the (N−K) auxiliary
variables only have two non-zero coefficients, we conservatively
assume that the matrix for this LP is dense in order to adopt
the best known LP complexity result [Jiang et al., 2020]. In the
best case, BLam would provide tight bounds on λmin after just
one iteration. So setting K =

√
N and assuming Gi�N , the

per-round complexity is

Ω(
√
N |S|2|A|+N |S|2+N

3
2 |S|+N2) (8)

Where the first term is the LP setup time to add constraints
(which dominates the time to add variables) and the last three
terms are the LP solve complexity, which is approximately square
in the number of variables. Applying the same reasoning to the
direct LP solve approach, which hasN |S| variables andN |S||A|
constraints gives the following best (and worst) case complexity

O(N |S|2|A|+N2|S|2) (9)

Thus, BLam has a strictly better best-case complexity in the
problem size. However, in the worst case, setting Kstep=

√
N ,

BLam would require the full
√
N iterations to get a tight bound on

λmin. In this case, the LP setup time would match the naive LP
approach, but successive solves would become more expensive.
Using basic summation, this gives a worst-case complexity of

O(N |S|2|A|+N 5
2 |S|2) (10)

Which, handily, is only
√
N worse than the naive approach. How-

ever, we will show in experiments that the typical run time and
scaling of BLam is much faster than the naive approach in practice.
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