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Abstract
Controlling bias in training datasets is vital for en-
suring equal treatment, or parity, between different
groups in downstream applications. A naive solu-
tion is to transform the data so that it is statisti-
cally independent of group membership, but this
may throw away too much information when a rea-
sonable compromise between fairness and accu-
racy is desired. Another common approach is to
limit the ability of a particular adversary who seeks
to maximize parity. Unfortunately, representations
produced by adversarial approaches may still retain
biases as their efficacy is tied to the complexity of
the adversary used during training. To this end, we
theoretically establish that by limiting the mutual
information between representations and protected
attributes, we can assuredly control the parity of
any downstream classifier. We demonstrate an ef-
fective method for controlling parity through mu-
tual information based on contrastive information
estimators and show that it outperforms other exist-
ing approaches. We test our approach on UCI Adult
and Heritage Health datasets and show that our ap-
proach provides more informative representations
across a range of desired parity thresholds while
providing strong theoretical guarantees on the par-
ity of any downstream algorithm.

1 Introduction
Learning algorithms often exploit and exaggerate biases
present in the training dataset. To tackle this problem, a
set of approaches propose learning representations or pre-
processing the data in a way that removes information about
the protected attributes ensuring any downstream algorithm
cannot use the sensitive information [Song et al., 2019;
McNamara et al., 2017]. Ideally, users of this transformed
data can focus on maximizing performance for their tasks
using any methods available without the risk of producing
biased or unfair outcomes [Cisse and Koyejo, 2019]. The
strongest requirement for fair representations is to be statisti-
cally independent of sensitive attributes, but this may lead to
large drops in predictive performance as sensitive attributes
are often correlated with the target. Therefore, it is desirable

Representative Methods Adversarial Controllable
Guarantee Parity

Song et al. [2019] Weak1 Heuristic
Moyer et al. [2018] Strong No2

Madras et al. [2018] None Heuristic
Roy and Boddeti [2019] None No
Ours Strong Provable

Table 1: Fair representation learning methods

to produce representations that can trade-off some measure
of fairness with the utility [Menon and Williamson, 2018;
Dutta et al., 2019].

Many recent approaches for learning fair representations
leverage adversarial learning to remove unwanted biases from
the data by using an adversary during training that tries to re-
construct sensitive attributes from the representation [Jaiswal
et al., 2020; Roy and Boddeti, 2019; Madras et al., 2018].
While adversarial methods have been shown to be useful in
learning fair representations, they are often limited by the
adversary’s model capacity [Xu et al., 2020]. A predictive
model more powerful than the adversary used in training may
reveal hidden biases that are present in the representations.
Hence, a model trained with adversarial learning has no guar-
antee to control fairness against an arbitrary adversary. Other
methods for learning fair representations focus on the stricter
constraint of inducing statistical independence [Moyer et al.,
2018; Louizos et al., 2016] and not on trading-off between
fairness and informativeness. We summarize some of these
approaches and their properties in Table 1.

Our main contributions are - a) theoretically show that
mutual information between representation and sensitive-
attributes bounds the parity of any decision algorithm, and
b) propose practical ways to limit mutual information lever-
aging contrastive information estimators that can efficiently
trade-off predictability and accuracy.

1Song et al. [2019] minimize two different bounds on I(z : c)
— one is a very loose upper bound and another uses adversarial
learning. So the adversarial guarantee is unclear or at best weaker.

2Moyer et al. [2018] designed their method for enforcing inde-
pendence, however we consider a modification of their method for
controlling parity, based on our Theorem 2.



2 Mutual Information Bounds Parity
We consider a dataset of triplets D = {xi, yi, ci}Ni=1, where
xi, yi, ci are iid samples from data distribution p(x,y, c). c
are the sensitive or protected attributes, y is the label, x are
features of the sample which may include sensitive attributes
and ŷ denotes predicted label, according to some algorithm.
We may also interpret ŷ as the outcome of some decision
procedure. We use bold letters to denote the random vari-
able, and the regular font represents corresponding samples.
In this work, we consider stochastic representations of data
i.e. z(x) ∼ q(z | x = x). We want to learn d-dimensional
representations z of input x, such that any classifier trained
on only z is guaranteed to be fair, i.e., it has statistical parity
within some δ′. In this work, we focus on statistical parity, a
popular measure of group fairness, and it is defined as:

Definition 1. Statistical Parity: [Dwork et al., 2012] It is the
absolute difference between the selection rates of two groups.
Mathematically,

∆DP(A, c) = |P (ŷ = 1 | c = 1)− P (ŷ = 1 | c = 0)|
where ŷ denotes decisions produced by some decision algo-
rithm A. When there are more than two groups, we define
statistical parity to be the maximum parity between any two
groups (as implemented in Bird et al. [2020]).

Mutual information between representations and protected at-
tributes, denoted as I(z :c), can be used to limit the statistical
parity via the following result.

Theorem 2. For some z, c ∼ p(z, c), z ∈ Rd, c ∈ {0, 1},
and any decision algorithm A that acts on z, we have

I(z : c) ≥ g (π,∆DP (A, c))

where π = P (c = 1) and g is monotonically increasing.

We omit the proof of the theorem and exact form of g due to
space constraints. We only require the following information
about g for our arguments—g is monotonically increasing in
∆DP, and π is constant for a specific dataset. We see from
Thm. 2 that I(z : c) bounds the parity of any downstream de-
cision algorithm. Since g is a monotonically increasing func-
tion, any reduction in I(z : c) will decrease ∆DP too.

We emphasize that I(z : c) is often used as a proxy objec-
tive to control statistical parity [Edwards and Storkey, 2016;
Song et al., 2019; Moyer et al., 2018]. It is often justified
via the data processing inequality and the intuition that both
statistical parity and mutual information are measures of de-
pendence. However, due to data processing inequality, we can
only guarantee that if we limit information about c in z, then
no subsequent operations on z can increase information about
c, i.e., I(ŷ : c) ≤ I(z : c), but the effect on statistical par-
ity is unclear. Our result (Thm. 2) demonstrates that limiting
mutual information can monotonically limit statistical parity,
which had not been theoretically demonstrated until now.

3 Practical Objectives for Controlling Parity
Equipped with an algorithm agnostic upper bound to par-
ity, we now discuss practical objectives for learning fair
representations. Along with limiting parity, we also want
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Figure 1: Venn diagram to
show interference between
I(z : c) and I(z : y).
The dotted and dashed part
are minimized or maxi-
mized, respectively, but the
gray region is both mini-
mized and maximized. See
Sec. 3.1 for details.

the latent representation to be highly predictive (informa-
tive) about the label, which is often realized by maximiz-
ing mutual information between y and z, i.e., I(y : z) im-
plicitly [Edwards and Storkey, 2016; Madras et al., 2018;
Jaiswal et al., 2020] or explicitly [Moyer et al., 2018].

O1 : max
q
I(y : z) s.t. I(z : c) ≤ δ

or, max
q
I(y : z)− βI(z : c) (1)

where, z,x ∼ q(z | x)p(x) and β > 0 is a hyperparameter.

3.1 Interference between I(y : z) and I(z : c)
While I(y : z) has been commonly proposed as a criterion
to enforce the desiderata of representations being informative
about labels, when the data is biased, i.e., I(y : c) > 0, max-
imizing I(y : z) is in direct contradiction with minimizing
I(z : c). To illustrate this point, we refer to the information
Venn diagram in Fig. 1. The goal of fair representation learn-
ing is to move the circle representing information about the
representation, z, to have high overlap with y and low overlap
with c. However, there is a conflict in the gray region where
we cannot increase overlap with y without also increasing
overlap with c. We observe experimentally that this conflict
hurts the model performance and makes it hard to achieve
lower parity values at a reasonable accuracy. This conflict
can be avoided. Since fair learning aims to capture informa-
tion about y that is not related to the protected attribute c, we
want to maximize the overlap between z and the region of y
that excludes c. This quantity is precisely the conditional mu-
tual information, I(y : z | c), which we propose to maximize
instead of I(y : z). This leads us to the following objective:

O2 : max
q
I(y : z | c) s.t. I(z : c) ≤ δ

or, max
q
I(y : z | c)− βI(z : c) (2)

where, z,x ∼ q(z | x)p(x) and β > 0 is a hyperparame-
ter. Eq. 2 defines our approach, but the information-theoretic
terms are difficult to estimate directly. Next, we derive practi-
cal variational bounds for the terms appearing in Eqs. 1 & 2.

3.2 Lower bounds for I(y : z) and I(y : z | c)

I(y : z) = H(y)−H(y | z)

= H(y) + Ey,z log r(y | z) + KL (p(y | z) ‖ r(y | z))

≥ H(y) + max
r

Ey,z log r(y | z) (3)

and similarly,

I(y : z | c) ≥ H(y | c) + max
r

Ey,z,c log r(y | z, c) (4)



H(y) and H(y | c) are properties of data and, therefore,
constant from the optimization perspective. When y is a
one-dimensional variable denoting the target class, this is
equivalent to minimizing cross-entropy. To this end, we will
parametrize the variational distribution r using a neural net-
work with parameters ψ, but other models can also be used.

3.3 Upper bound for I(z : c)
Our technique for upper-bounding I(z :c) is similar to Moyer
et al. [2018] and makes use of the following observation:

I(z : c) = I(z : c | x) + I(z : x)− I(z : x | c) (5)
I(z : c | x) = 0, as z is a function of x and some independent
noise. As a result, we have I(z : c) = I(z : x)− I(x : z | c).
The first term is the information bottleneck term [Alemi et
al., 2017] and limits the information about x in z, and we
will bound it by specifying a prior over z. The second term
tries to preserve information about x but not in c and we will
lower bound it via contrastive estimation .
Upper bound for I(z : x) by specifying a prior: In order to
upper-bound I(z : x), we use the following result:
I(z : x) = ExKL (q(z | x;φ) ‖ p(z))− KL (p(z) ‖ q(z))

≤ ExKL (q(z | x;φ) ‖ p(z)) (6)
where p(z) is any distribution. This is similar to the rate term
in a VAE or information bottleneck approach [Alemi et al.,
2017; Higgins et al., 2017]. Motivated by this similitude, we
let p(z) be standard normal distribution and q(z | x;φ) be a
diagonal gaussian distribution whose mean and variance are
parametrized as µ(x) = fµ(x;φ),Σ(x) = fΣ(x;φ).
Lower bound for I(x : z | c) via constrative estimation:
We propose to lower bound I(x : z | c) via contrastive mutual
information estimation by using the following proposition.
Proposition 3. [Poole et al., 2019] For any u, v, w ∼
p(u,v,w), ũ ∼ p(u |w), and function f , we have

I(u : v |w) ≥ Eu,v,w log
ef(u,v,w)

1
M

∑M
j=1 e

f(ũj ,v,w)
(7)

where, u, ũj ∈ U , v ∈ V , w ∈ W , f : U × V ×W → R, and
M is the number of samples from p(u |w).
As a direct application of this result, we can lower-bound and
maximize I(x : z | c). However, there is a caveat that we need
to sample from p(z | c). Sampling from this conditional dis-
tribution in general case can be hard but for our problem, it
can be easily accomplished. Often for fairness applications, c
is a discrete random variable with low cardinality. Infact it is
often a binary random variable. Therefore, {zj : (zj , cj = i)}
can be considered as samples from p(z | c = i). In our exper-
iments, we parametrize f(z, x, c) as a bilinear function (sim-
ilar to Oord et al. [2018]) and f(z, x, c) = zTWT e(x; θ′),
where W, θ′ are learnable parameters.

We use results from Eqs. 4, 6, 7 to tractably compute and
maximize the proposed objective in Eq. 2. We call our objec-
tive Fair Contrastive Representation Learner (FCRL).

4 Experiments
Datasets: We validate our approach on UCI Adult [Dua and
Graff, 2017] and Heritage Health3 Dataset. UCI Adult is 1994

3https://www.kaggle.com/c/hhp

census data with train and test set size of 30K and 15K, re-
spectively. The target task is to predict whether the income
exceeds $50K, and the protected attribute is considered gen-
der (which is binary in this case). We use the same prepro-
cessing as Moyer et al. [2018]. Heritage Health dataset is
data of around 51K patients (40K in the train set and 11K
in the test set), and the task is to predict the Charleson In-
dex, which is an indicator of 10-year survival of a patient. We
consider age as the protected attribute, which has 9 possible
values. We use the same preprocessing as Song et al. [2019].
Evaluation Procedure: A fair representation learning algo-
rithm aims to produce representations such that any down-
stream decision algorithm that uses these representations will
produce fairer results. Therefore similar to Madras et al.
[2018], we train the representation learning algorithm on
training data and evaluate the representations by training clas-
sifiers for downstream prediction tasks. Since our purpose is
to assess the representations, we report average accuracy (as
an indicator of most likely performance) and maximum par-
ity (as an indicator of worst-case bias) computed over 5 runs
of the decision algorithm with random seeds. Unlike Madras
et al. [2018], we also allow for preprocessing to be done on
representations. Preprocessing steps like min-max or standard
scaling are common and often precede training of classifiers
in a regular machine learning pipeline.
Baselines and Architecture: We compare with a number
of recent approaches, including information-theoretic and
adversarial methods from the recent literature. Among
the information-theoretic methods, we compare with
MIFR [Song et al., 2019] which generalizes several previous
fair representation learning approaches [Louizos et al., 2016;
Edwards and Storkey, 2016; Madras et al., 2018;
Zemel et al., 2013] and CVIB [Moyer et al., 2018]. We
also compare with recent state-of-the-art adversarial methods
of Jaiswal et al. [2020] (Adversarial Forgetting), Roy and
Boddeti [2019] (MaxEnt-ARL) and Madras et al. [2018]
(LAFTR). LAFTR is only applicable when c is a binary
variable. As a baseline, we also train a one hidden layer MLP
predictor directly on the data without regards to fairness
(Unfair MLP). For a fair comparison, we set d = 8 for all the
methods and use model components like encoder, decoder,
etc. of the same complexity. We use a 1-hidden layer MLP
with ReLU non-linearity and 50 neurons in the hidden layer
as our choice of decision algorithm, and representations are
preprocessed by standard scaling.
Improved Accuracy vs. Parity Trade-offs: For different fair
representation learners, we compare accuracy versus parity
achieved for the above-specified classifier. We visualize the
trade-offs between fairness and task performance by plotting
parity vs. accuracy curves for each representation learning al-
gorithm by varying each method’s inherent hyperparameters
over the range specified in the original works to get different
points on this curve in Fig. 2. The goal is to push the frontier
of achievable trade-offs as far to the bottom-right as possible,
i.e., to achieve the best possible accuracy while maintaining
a low parity. From a visual inspection of Fig. 2, we can see
that our approach preserves more information about label y,
across a range of fairness thresholds for both the datasets.

For the Adult dataset, MIFR [Song et al., 2019] is compet-
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Figure 2: Parity vs. Accuracy trade-off for UCI Adult and Heritage Health dataset using a 1 hidden layer MLP. Lower ∆DP is better and higher
accuracy is better. To get different trade-off points, we use representations generated by varying each method’s inherent loss hyperparameters.
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Figure 3: Parity and Accuracy variation with β. Our method can
explore feasible regions of parity and accuracy by varying only a
single parameter β

itive with our approach near low parity; however, it fails to
achieve higher accuracy at higher demographic parity. This is
because MIFR proposed to use I(x : z) as an upper bound to
I(z : c), which is very loose, and this penalizes information
about x as well, which is not desirable. CVIB [Moyer et al.,
2018] is able to consistently trade-off accuracy while using a
reconstruction based bound. But it maximizes I(y : z) which
conflicts with desired minimization of I(z : c) (see Sec. 3.1).
Controlling Parity: Our approach has a single intuitive hy-
perparameter β, which can be used to control I(z :c) directly
and, therefore, via Thm. 2, to monotonically control parity
(see Fig. 3).

5 Related Work
Fair classification methods are often categorized based on
which stage of the machine learning pipeline they target.
Our approach targets the pre-processing stage. Pre-processing
methods are useful when the onus of fairness is on a third
party or the data controller, and the end-user may be obliv-

ious to fairness constraints [McNamara et al., 2017; Cisse
and Koyejo, 2019]. Pre-processing methods must ensure fair-
ness with respect to any downstream classification algorithm.
Many pre-processing methods have discussed the desiderata
of ensuring strong guarantees on fairness so that any down-
stream classifier may be used freely [McNamara et al., 2017;
Song et al., 2019; Edwards and Storkey, 2016; Madras et al.,
2018]. However, their operationalization often leads to an ap-
proach that may not ensure guarantees (due to limits of ad-
versarial methods, for instance). Other works have explored
information-theoretic objectives for learning invariant repre-
sentations [Moyer et al., 2018] and fair representations [Song
et al., 2019]. Dutta et al. [2019] use tools from information
theory to analyze the trade-off between fairness and accuracy.

Contrastive learning and its variants have shown promis-
ing results for learning representations for many applications,
e.g. , images, speech [Oord et al., 2018], and text [Mikolov
et al., 2013]. We are the first to explore its application for
learning fair representations. Contrastive learning has been
most actively explored in self-supervised learning, where the
information to optimize is chosen by hand to be similar to
some target task [Chen et al., 2020; Oord et al., 2018]. In our
work, we demonstrated a natural connection between parity
and mutual information. Other variational bounds on infor-
mation [Poole et al., 2019] and estimators like MINE [Belg-
hazi et al., 2018] and NWJ [Nguyen et al., 2010] could also
be leveraged for parity control using our results.

6 Conclusion
Most of the existing methods do not provide a way to control
parity, and even if they do, often, it is only in a heuristic way.
By proving a one-to-one relationship between information-
theoretic quantities and statistical parity of arbitrary classi-
fiers, we can finally see how varying a single hyper-parameter
controlling information can explore the entire fairness versus
accuracy spectrum. This information-theoretic characteriza-
tion is algorithm-independent so that our control of parity can
be guaranteed regardless of downstream applications.
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