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Abstract 

There is widespread acceptance that data from earth 
observation satellites, combined with artificial 
intelligence, have the potential to play an important 
role to enable the quantification of the United 
Nations Sustainable Development Indicators 
(SDIs). However, building workflows that allow 
accurate and timely measurement of the SDIs from 
sub-national to global scales is proving challenging. 
We discuss a research program that aims to develop 
techniques to meet these challenges and help 
provide member states of the UN with effective 
methods of monitoring progress towards meeting 
the goals of the 2030 Agenda for Sustainable 
Development. 

1 Introduction 

In 2015 the member states of The United Nations adopted a 
program for enhancing the well-being of humanity known as 
the 2030 Agenda for Sustainable Development [United 
Nations, 2015]. Central to the program is a set of 17 
sustainable development goals (SDGs), which collectively 
consist of 174 targets. Progress on each target is evaluated by 
measuring one or more indicators (SDIs) associated with 
each target. In total there are 231 indicators. 

In adopting the sustainable development agenda, each 
member country committed to producing reports evaluating 
the progress made towards achieving each of the goals, but in 
many cases the variables required to measure each indicator 
are not well defined or the data are not easy to collect. 
Developing nations in particular may not have the resources 
to hold the regular surveys and censuses required to meet the 
reporting requirements [Oshri et al., 2018]. The United 
Nations [2020] have evaluated that as of December 2019, 
only half the indicators are tier 1 – that is, they have a defined 
methodology and standards, and at least 50% of countries are 
producing adequate data. The lack of data for measuring the 
SDIs poses a significant challenge; unless we are better able 
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to measure the SDG indicators, we risk not meeting the 
targets of the 2030 agenda [Gennari & Navarro, 2020]. 

Satellite Earth Observation (EO) data has been suggested 
as a way of measuring some indicators [UN SIGDTT, 2017]. 
Several studies have identified the indicators that can be fully 
or partially measured using satellite data [Anderson et al., 
2017; Andries et al., 2019]. Machine learning has been used 
with EO data to measure variables such as land cover and 
crop mapping [Kussul et al., 2019], which are required to 
measure several environmental SDIs. Other studies have 
explored how to use EO data to proxy measurements of 
human activity and built machine learning (ML) models for 
socio-economic indicators such as poverty levels [Xie et al., 
2016] and infrastructure availability [Oshri et al., 2018]. The 
increasing availability of satellite data, together with further 
research will enable more indicators to be measured or 
estimated from earth observation data [Andries et al., 2019]. 

However, satellite earth observation data consist of 
inherently large, complex data sets [Tan et al., 2017], so 
measuring indicators on a large scale presents several 
challenges, which are discussed in section 3. Methods to 
overcome these challenges are needed before consistent 
wide-spread monitoring of the SDIs will be achievable. 

We seek to use AI methods and EO data to develop robust 
methods of measuring the SDIs. Firstly, we will contribute to 
the literature evaluating the potential for using EO data to 
monitor the SDIs. Secondly, we will address the technical 
challenges preventing wide-spread adoption of AI to monitor 
the SDIs. Thirdly, we will develop AI workflows and 
pipelines for selected indicators to produce reports and maps 
of indicator measurements and progress. Finally, we will use 
explainable AI techniques to interpret the pipeline outputs to 
provide evidence to support reporting of progress and 
development of policy to achieve the SDGs.  

The rest of this paper is structured as follows: in section 2 
we discuss the benefits of using EO data to measure the SDIs 
and provide examples of common variables measurable using 
EO data. Section 3 outlines some of the main research 



   

 

   

 

challenges and in section 4 we discuss the aims of our 
research program. 

2 Satellite Earth Observation 

The benefits of using EO data to measure the SDIs have been 
discussed in several studies [Anderson et al., 2017; Paganini 
et al., 2018]. Polar-orbiting and geostationary satellites 
provide regular images covering the entire world without 
regard to geographic boundaries [Anderson et al., 2017]. 
Space agencies commit to long-term missions, ensuring 
continuity of data [Paganini et al., 2018], providing long-term 
sources of consistent and reliable data. Many agencies also 
make the images and derived data products open and freely 
available [Paganini et al., 2018].  

These benefits help fill the data gap for measuring the 
SDIs, providing data for countries unable to collect it, and 
allowing SDIs to be measured more frequently than is 
possible using surveys. The global coverage of EO data 
allows consistency of data collection and preparation, and 
indicator computation [Anderson et al., 2017]. 

2.1 Using EO to Monitor the SDIs 

Almost all satellite instruments used for earth observation 
sense electromagnetic radiation, which has been either 
reflected by or emitted from the Earth’s surface or 
atmosphere. Active sensors, such as radars, emit a signal and 
measure how much of the signal is received back. Passive 
sensors measure radiation originating from another source, 
such as the sun, which is stored on the land surface and later 
released. Satellites also differ in the type of orbit (e.g., geo-
stationary or polar orbit), the frequencies sensed (e.g., 
optical, infra-red or microwave), and the spatial, temporal, 
and spectral resolution. By varying these modalities, space 
agencies design instruments to collect data to support specific 
EO tasks [Paganini et al., 2018]. 

To extract meaningful information about objects, the raw 
sensor data must be converted into quantifiable variables [UN 
SIGDTT, 2017]. In this section we discuss such variables and 
the respective satellite platforms that collect data to estimate 
them, and provide examples of how these variables can be 
used to monitor SDIs. 

Land Cover. Land cover classification is a well-studied 
application of EO data. As an example, Kussul et al. [2019] 
used land cover mapping to measure SDI 15.1.1 (Forest area 
as a proportion of total land area) for the Ukraine. Passive 
optical sensors such as the European Space Agency’s (ESA) 
Sentinel-2 and NASA’s Landsat are commonly used for this 
task, but some authors have suggested to complement this by 
using active radar systems such as Sentinel-1 [Asner, 2001]. 

Water Quality. Optical sensors with multiple narrow 
bands, such as NASA’s Aqua MODIS and ESA’s Sentinel-3, 
can detect variations in water coloration, allowing the 
measurement of water quality variables such as chlorophyll 
levels and turbidity. Sarelli et al [2018] have used these 
variables to monitor SDI 14.1.1 (Index of coastal 

eutrophication and floating plastic debris density) for western 
Europe, identifying areas of coastal eutrophication.  

Nighttime Light. Nighttime light is a measure of the visual 
radiation emitted from earth at nighttime. As nighttime light 
is mainly from artificial sources it indicates the presence of 
human activity and has been used to estimate poverty levels 
for SDI 1.1.1 (Proportion of population below the 
international poverty line) [Xie et al., 2016] and access to 
electricity for SDI 7.1.1 (Proportion of population with 
access to electricity) [Falchetta et al., 2019]. Data from low-
resolution optical sensors such as the VIIRS sensor on 
NASA’s Suomi-NPP satellites are used to measure nighttime 
light.  

2.2 AI Benefits 

The development of artificial intelligence algorithms for big 
data provides methods of extracting additional information 
from EO data. Here we discuss recent research using AI and 
EO data that has led to new and improved techniques for 
monitoring the SDIs.  

Improved Accuracy. Although land cover maps have been 
produced using single images of low and medium resolution 
data and simple statistical methods, the availability of long-
term high-resolution data means it is possible to produce 
highly accurate land cover maps using machine learning 
methods. Gómez et al. [2016] showed the advantages of 
using a time series of satellite images (SITS), while Pelletier 
et al. [2019] showed the benefits of using both high-
resolution images and deep learning techniques with SITS. 
Belgiu & Csillik [2018] combined SITS with image 
segmentation (OBIA) to develop an accurate and 
computationally efficient algorithm for crop classification. 

Measure More Indicators. Machine learning methods 
such as deep learning allow information to be extracted from 
EO data that can be used as proxy variables for indicators that 
are not directly observable. Deep learning from EO data has 
been used to estimate poverty levels [Xie et al., 2016] and to 
detect possible sites of slave labor [Foody et al., 2019]. 
Innovative uses of ML such as these will allow more SDIs to 
be measured or monitored. 

3 EO Data Challenges 

EO data, although providing important information for 
measuring the SDIs, are large, complex datasets and present 
several challenges that need to be overcome before these 
benefits can be fully recognized. This section briefly 
discusses some of the main challenges. 

Large Datasets. Analyzing high resolution satellite 
requires processing large volumes of data. The 10m 
resolution of the Sentinel-2 images means producing a land-
cover map for the entire Earth requires the classification of 
about 1.5 trillion pixels. Many existing classification 
methods do not scale to these sized datasets. Shifaz et al. 
[2020] found that current state-of-the-art time-series 



   

 

   

 

classifiers took an infeasible length of time to run using a very 
modest sized training set. 

Limited Training Data. The lack of reference data in 
some locations means that it is necessary to use data from 
other sources to train models. However, naively reusing a 
model trained on data from another location is likely to lead 
to poor results due to differing agricultural, physical, or 
climatic conditions [Tuia et al., 2016]. Domain adaptation 
methods (such as transfer learning) attempt to address this 
issue [Lucas et al., 2019]. 

Missing Data. Satellite images are vulnerable to missing 
data. In images from optical sensors, cloud cover is a major 
cause of missing data, especially in the tropics [Asner, 2001]. 
A common solution is to use composite images, where a 
single image is created by combining a time series of images. 
This however can introduce errors if the ground cover 
changes during the compositing time period [Holloway et al., 
2019]. Other methods of handling missing data are to use 
spatial or temporal interpolation [Shen et al., 2015] or to use 
multiple sources of EO data [Asner, 2001]. 

Monitoring Over Time. In order to effectively monitor 
progress towards meeting the SDG targets, we need to not 
only evaluate the SDIs at specific times but quantify changes 
to them over time. Robust methods of detecting significant 
changes to the underlying variables are needed [Polykretis et 
al., 2020]. 

Interpretability. The lack of an explanation of the reasons 
why a model reached a specific decision is a well-recognized 
issue in machine learning [Bhatt et al., 2020]. Workflows 
incorporating explainable AI principles [Gunning and Aha, 
2019] are needed to help decision makers understand issues 
and make evidenced-based policy decisions to help countries 
meet their SDG targets [Metternicht et al., 2020]. 

Bias.  An advantage of satellite Earth observation is it 
provides a globally consistent method of collecting data 
[Anderson et al., 2017], however biases in field data or model 
selection processes may still arise and need to be controlled 
or accounted for [Mehrabi et al., 2019]. 

Uncertainty.  Although all measurements involve a degree 
of uncertainty, it is recognised that measurements from EO 
data have more uncertainty than field-based measurements 
[UN SIGDTT, 2017]. To ensure transparency and enhance 
decision making, estimates of the uncertainties associated 
with the outputs are required. 

4 Proposed Work 

Overcoming the Technical Challenges.  The challenges 
discussed in the previous section are common to many areas 
of AI and are active areas of research. We will incorporate 
appropriate solutions found into workflows for measuring 
SDIs, adapting them to meet the specific requirements of our 
program. Recent works that we expect to build on include 
ROCKET [Dempster et al., 2019], which made a substantial 
advance towards a classifier capable of processing the large 
volumes of data contained in high-resolution SITS images; 

Lucas et al. [2019], who are helping us understand how 
domain adaptation can be applied to EO data; and Polykretis 
et al. [2020], who investigated using change vector analysis 
for land cover change detection, to detect both land cover 
type and magnitude changes. 

Developing AI Pipelines.  We will select indicators 
suitable for measuring using EO data and develop workflows 
and pipelines to measure and report on indicators, using 
methods such as those developed by the ERA-PLANET 
project [Kussul et al., 2019] as a guide. Heeding the advice 
of the UN Satellite Imagery and Geospatial Data Task Team 
[UN SIGDDT, 2017] to start small, we will start with 
indicators that are straight-forward to measure and for local 
(Australian) areas, before developing a pathway to scale to 
larger regions and more complex indicators. 

Role of AI and EO Data.  One of the contributions we are 
seeking to make is to build on previous analysis work that has 
identified the SDIs that can be monitored using EO data 
[Anderson et al., 2017; Andries et al., 2019]. When designing 
workflows, we will analyze the variables these indicators 
require to identify the EO instruments and modalities that are 
best suited to measuring these variables. This will provide 
further insights into variables shared between the SDIs, and 
important EO sources.  

Interpreting the Results.  The reason for monitoring the 
SDIs is not only to evaluate progress towards meeting the 
SDG targets but also to identify areas (locations, groups of 
people etc.) where intervention is needed and to inform 
policy makers of the types of intervention required [Paganini 
et al., 2018]. To achieve this, we aim to build workflows that 
not only present results but also provide explanations of 
decisions and associated uncertainties [Ribeiro et al., 2016]. 

5 Conclusion 

The United Nations 2030 Agenda for Sustainable 
Development is an important global initiative towards 
building an equitable world capable of supporting the 
ongoing development of humanity. Monitoring the progress 
towards these goals using the SDIs is of critical importance 
towards meeting this agenda. 

Satellite earth observation data are rich sources of 
information, especially where in-situ data are scarce or 
difficult to obtain, but the complexity of this data presents 
challenges to using it to its fullest potential. This research 
program aims to use AI techniques to meet these challenges 
and develop workflows capable of monitoring SDIs at all 
levels, thus providing a leading example of using AI for 
social good. 
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