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Abstract

As fairness and discrimination concerns per-
meate the design of both machine learning
algorithms and mechanism design problems,
we discuss differences in approaches between
these two fields. We aim to bridge these two
communities into a cohesive narrative that en-
compasses both the large-scale capabilities of
machine learning and group-focused fairness
as well as the strategic incentives and utility-
based notions of fairness from mechanism de-
sign, showing their necessity in designing a
fair pipeline.

1 Introduction

Fairness and equity are contested concepts. Paraphras-
ing [Dworkin, 2002], “People who praise or dispar-
age fairness disagree about what they are praising or
disparaging.” Indeed, when computer scientists and
economists are faced with the problem of discrimination,
they still struggle with agreeing on the appropriate def-
inition of fairness.

Both machine learning (ML) and mechanism design
(MD) have developed frameworks for defining and ap-
plying fair systems in which a central planner opti-
mizes a collective decision. While, historically, the fields
have differed in the application domains and methodolo-
gies used, ML is increasingly applied in decision-making
problems, in which MD is commonly used (e.g. adver-
tisement targeting). More specifically, supervised learn-
ing systems are increasingly being used for resource allo-
cation, with direct consequences on economic and other
aspects of society. A prediction or classification is often
tied to crucial decisions for which fairness becomes cen-
tral, such as receiving parole and being hired, and mech-
anism design often uses the outputs of machine learning
systems to make community-level decisions. Therefore,
it is essential to bridge both the normative and method-
ological components that comprise fair and equitable sys-
tems in machine learning and mechanism design. This
is the central purpose of this paper: to identify areas in
which ML and MD have inspired each other in defining
fair systems, and to fill in the ‘gaps’ that are lost in trans-

lating between ML and MD. While ML has started to in-
corporate notions of welfare in the design of classification
algorithms, there is still a tension, in the form of trade-
offs, between using parity-based notions and welfare no-
tions from economics to define fairness. These trade-offs
are often amplified in feedback loops that ML systems of-
ten involve. Conversely, while the field of mechanism de-
sign has focused on standard individual-level notions of
equity, machine learning has expanded on these through
group-level notions of disparity that can help diagnose
large scale inequities, whether they occur organically in
society or through the use of an algorithm. These devel-
opments arguably bring novel opportunities for the field
of machine learning to learn and understand socioeco-
nomic disparities in different communities.

Finally, we argue that mere translation between fair-
ness metrics is also not enough: we need to understand
the incentives that lead to their creation (as [Hu and
Chen, 2020] and [Sen, 1979] ask, ‘equality of what?’) and
to formulate a pipeline in which we can define contex-
tual fairness notions that address the underlying dynam-
ics of society, taking into account not only outcome dis-
tributions but also people’s preferences and incentives.
We conclude by discussing application domains in which
both MD and ML fruitfully collaborate.

2 Differences between Mechanism
Design and Machine Learning

Recent works in machine learning have opened a human-
centric direction of the field, extending it from a de-
scriptive nature (e.g. image classification) to a prescrip-
tive one that automates human decision making. This
shift has drawn attention to biases inherent to learn-
ing and predicting outcomes from historically prejudiced
data [Angwin et al., 2016; Buolamwini and Gebru, 2018;
Barocas and Selbst, 2016]. Much of the fairness-related
work in prescriptive ML relies on establishing parity
conditions for legally protected groups, without consid-
ering welfare notions or strategic behavior. However,
these notions lie at the core of mechanism design, which
leverages individuals’ strategies and sense of utility in
establishing equilibrium solutions and Pareto-efficiency,
but usually without conceptualizing the impact for dif-
ferent social groups. As [Abebe and Goldner, 2018;



Kasy and Abebe, 2020] point out, understanding the
differences between the two fields and bridging differ-
ent notions of fairness is essential in improving access to
opportunity for different communities.

2.1 Fairness in machine learning

Multiple quantitative definitions of fair ML algorithms
have been proposed; interestingly, their common charac-
teristic seems to be that they agree to disagree. Some
notions focus on individual fairness, where one wants
to “treat similar inidividuals similarly,” [Dwork et al.,
2012] while others prioritize group fairness in which the
algorithm strives for the average treatment of members
of different groups to be equal. Individual fairness im-
poses a much stronger constraint on what constitutes
a fair treatment; an algorithm must be fair with re-
spect to every single individual—not just on average.
On the other hand, group fairness notions generally as-
sess the bias of a system in a group through notions such
as equalized odds, equal opportunity and demographic
parity [Hardt et al., 2016; Verma and Rubin, 2018;
Mehrabi et al., 2019], acting as a relaxation of individual
fairness and assessing the large-scale effect of an algo-
rithm on vulnerable populations.

2.2 Fairness in mechanism design

There are two prevalent economic theories of discrimi-
nation: taste-based and belief-based, which arise due to
pure preferences [Becker, 1957] and imperfect informa-
tion, respectively. The latter theory can be particularly
informative for the design of fair ML systems as the true
attribute of an agent is often not observed directly, but
only through a proxy. From this theory, statistical dis-
crimination [Arrow, 1973; Phelps, 1972] generally as-
sumes that differences are exogenous but exist. Some
papers attribute discrimination to coordination failure:
agents are born unqualified but can undertake some
costly skill investment, which may lead to asymmetric
equilibria [Coate and Loury, 1993]. Thus, such economic
models offer useful insights on how to design a system
aware of inequality due to differentiated skill learning.
Finally, another theory of belief-based discrimination is
mis-specification [Bohren et al., 2019]. Without being
aware of their own bias [Pronin et al., 2002], some deci-
sion makers may hold misspecified models of group dif-
ferences which, in the absence of perfect information,
lead to false judgment of an individual’s abilities.

Beyond this, utilitarianism and normative economics
have been used in mechanism design to motivate the use
of utility functions as a synonym for social welfare. Al-
though these two terms are used interchangeably their
origin differs: as [Posner, 1983] writes, utilitarianism is a
philosophical system which holds that “the moral worth
of an action, practice institution or law is to be judged
by its effect on promoting happiness of society.” On
the other hand, normative or welfare economics holds
that “an action is to be judged by its effects in promot-
ing the social welfare.” In sharp contrast to ML, where
multiple definitions of fairness have been used, weighted

social welfare is the most commonly accepted measure
of broader equity in MD problems.

3 Past and Future Lessons

In this section, we enumerate several lessons that mech-
anism design (MD) and machine learning (ML) are able
to learn from each other. We denote by A → B a lesson
that has been or can be taught by field A to B.
MD → ML: Tension between fairness and welfare.
[Kaplow and Shavell, 2003] are among the first to argue
that welfare should be the primary metric for the effec-
tiveness of a social policy. They show that optimizing
for fairness instead of welfare can actually cause harm
in social decision-making processes. This is later sup-
ported by [Ben-Porat et al., 2019; Hu and Chen, 2020;
Hossain et al., 2020; Kasy and Abebe, 2020], who show
that adding group parity constraints can lead to a de-
crease in welfare for every group.

An important question that arises is whether the com-
mon utilitarian view of machine learning is problematic.
A common criticism is that it is not clear whose utilities
we should maximize and how much weight each indi-
vidual should receive in the optimization objective. For
example, should an algorithm ensure the average util-
ities of both protected and unprotected groups be the
same, or should each group contribute to the total wel-
fare proportionally to its size in the society? Using the
lens of welfare economics as well as economic theories of
discrimination to assess the equitability of ML systems
is crucial for designing truly just systems.
MD → ML: Long-term effects of fairness. Because
mechanism design considers outcomes for an entire popu-
lation of agents, the ML community has started to adopt
mechanism design techniques (ranging from large mar-
ket models to equilibria analysis in games to dynamic
models of learning agents) in order to study the effects
of ML algorithms on different subpopulations. For ex-
ample, the decisions made by an algorithm can change
the population data over time, requiring any “learning”
to be dynamic rather than one-shot.

The economics literature has long studied such effects,
but not from a machine learning perspective. Although
more work is needed to determine whether and how eco-
nomic models can help inform the design of ML algo-
rithms, some initial progress has been made. [Liu et
al., 2018; Kannan et al., 2019] consider two-step models
to understand the possibility of harms caused by fair-
ness constraints and the impossibility of equality, respec-
tively. Both papers are strongly influenced by the classic
models of [Phelps, 1972] and [Coate and Loury, 1993],
respectively. Similarly, [Hu and Chen, 2018] build upon
[Levin, 2009] and study the effect of short-term restric-
tions on improving long-term fairness in labor markets.
Drawing upon the theory of mis-specification, [Mona-
chou and Ashlagi, 2019] study the long-term effects of
social bias in online labor markets. Using behavioral dy-
namics, [Heidari et al., 2019] study the temporal relation
between social segregation and unfairness.



MD → ML: Strategic agents. The economist’s
basic analytic tool is the assumption that people are
rational maximizers of their utility, and most prin-
ciples of mechanism design are deductions from this
basic assumption. An emerging literature utilizes in-
sights from models with strategic incentives to inform
machine learning models and is often concerned with
agents who can manipulate their features. For exam-
ple, [Hu et al., 2019] contextualizes strategic invest-
ment in test preparation to falsely boost scores that are
used as a proxy to quantify college readiness, and the
disparate outcomes emerging from the ability to ma-
nipulating inputs into a classifier. [Milli et al., 2019;
Kleinberg and Raghavan, 2019] similarly show the ef-
fects of strategic agents on a classifier and analyze the
trade-offs between the decision maker’s utility and the
social burden different groups incur from their strate-
gies. Thus, it is important to design ML algorithms for
decision making with awareness of human incentives.
ML → MD: (Re)defining classic notions of fair-
ness. In contrast to the few notions of fairness stud-
ied in MD, there seems to be an inexhaustible list
of fairness definitions in ML, stemming from its sta-
tistical nature. Although a universal definition may
be both undesirable and unfeasible, formal definitions
are valuable in at least three ways. First, they al-
low precise reasoning about the normative design deci-
sions involved in building ML systems. Second, they
can make clear the ways in which the spirit of fair-
ness can be violated [Corbett-Davies and Goel, 2018;
Dwork et al., 2012]. And finally, a profound lesson of
fair ML is that intuitive and desirable ideas about fair-
ness may be in conflict; in particular, it may be im-
possible to simultaneously satisfy multiple fairness no-
tions [Kleinberg et al., 2017], and fairness can impose a
penalty to non-fairness desiderata [Corbett-Davies et al.,
2017]. Thus, ML can inform MD through its formal def-
initions that surface inherent tensions, and confront sys-
tem builders with the inescapable trade-offs they make.
ML → MD: Group-level diagnosis. [Hossain et al.,
2020] argue that group-level notions of utility from fair
division often focus on improving individual equitabil-
ity [Conitzer et al., 2019], missing the community im-
pact of an algorithm. On the other hand, group fairness
notions from fair ML shed light on legally protected com-
munities that may be subject to disparate impact of a
learning system, both in concept, by adapting and us-
ing legally protected groups in algorithmic design, and
in methodology, through defining group fairness as a re-
laxation of individual fairness. Thus, ML-inspired no-
tions of group fairness can be leveraged in MD to un-
derstand the impact of different welfare functions on dif-
ferent social groups. Beyond this, by considering groups
that have legal precedence in being under-served, ma-
chine learning can extend the scope of mechanism de-
sign to include group-level diagnosis. As [Abebe et al.,
2020] points out, computing is particularly well-suited
for large-scale diagnosis of social inequality, and thus in-
sights from machine learning can be leveraged in under-

standing social inequalities in mechanism design as well,
from the diverse impact of welfare functions on commu-
nities, to the way different sub-populations may strate-
gically react to a central planner.

4 Application Domains
Collaboration between ML and MD is motivated by the
application domains that they synergistically develop.
From education and labor markets, to criminal justice
and ad auctions, ML and MD must be understood to-
gether in the way they bring new perspectives in fairness.

While ML methods have been first shown to ex-
hibit bias in the judiciary sector [Chouldechova, 2017;
Jung et al., 2020; Corbett-Davies and Goel, 2018], we
are far from achieving a truly ‘just’ system. Beyond this,
both ML and MD have successfully collaborated in appli-
cations for labor markets and ad auctions. This involves
combining mechanism design ideas with insights about
discrimination from the labor economics literature [Hu
and Chen, 2018; Kleinberg and Raghavan, 2018] and bet-
ter understanding how bias and discrimination manifest
in nascent domains like algorithmic hiring [Bogen and
Rieke, 2018; Raghavan et al., 2020; Sánchez-Monedero
et al., 2020] and the gig economy [Rosenblat et al., 2017;
Monachou and Ashlagi, 2019]. Finally, while auctions
are a subfield of mechanism design, fairness in online ad
auctions has largely been inspired by fair ML. Several
studies show that the resulting ad deliveries could lead
to unfair distribution of audience groups [Sweeney, 2013;
Vermeren, 2015; Ali et al., 2019]. This could be due to
discriminatory practices or pre-existing bias of the adver-
tisers [Sweeney, 2013; Vermeren, 2015], or even competi-
tive spillovers among advertisers [Ali et al., 2019]. Other
recent works have proposed interventions for fairer ad
auctions by using suitable group fairness notions [Celis
and Vishnoi, 2019] or by extending classical notions like
envy-freeness [Ilvento and Chawla, 2020].

While MD has traditionally studied problems such as
school choice, college admissions and affirmative action
[Abdulkadiroğlu and Sönmez, 2003; Chade et al., 2014;
Abdulkadiroğlu, 2005], ML methods have also recently
been applied in establishing conditions in which better
demographic representation can be achieved in college
admissions [Liu et al., 2020; Kannan et al., 2019]. Recent
papers [Roth, 2008; Pathak, 2017; Hitzig, 2018] have also
pointed to normative gaps in using economic notions of
social welfare in solving these problems, showing that
this problem is yet far from being solved.

5 Conclusion
Finally, while social problems cannot be solely tackled
with tools ML and MD, bridging these two fields is an
important step in establishing a pipeline that is ulti-
mately equitable, by incorporating concerns regarding
fairness and inequality. Many questions remain open in
this field as more work is needed to create meaningful in-
terventions in sociotechnical systems, with applications
in labor, education, healthcare, advertising, finance, and
social networks.
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and Tayfun Sönmez. School choice: A mechanism design
approach. American economic review, 93(3):729–747,
2003.
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