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The dream of Al methods for PA management
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Figure from Silvestro et al., Improving biodiversity protection through artificial intelligence, Nature Sustainability, 2022.



% Research

Accelerating fusion science
through learned plasma control
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he Game of No-Press Diplomacy via Human-Regularized Reinforcement Learning and Planning
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Degrave et al., Magnetic control of tokamak plasmas through deep reinforcement learning, Nature, 2022.

Paquette et al., No Press Diplomacy: Modeling Multi-Agent Gameplay, NeurlPS 2019.



Reinforcement learning without a trusted simulator

ML model RL solver : _
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Environment model must be constructed from data

Other domains: medication adherence (NeurlPS 2020, AAMAS 2021a/b)

Patient procedure prep EEE ---BEEE EEE
Restaurant inspections (ICML Workshop 2022) | | | | | bl

Wang, S., C., P, D.-V,, Tambe. Learning MDPs from Features: Predict-Then-Optimize for
Sequential Decision Problems by Reinforcement Learning. NeurlPS 2021.



Reinforcement learning without a trusted simulator

4 Backpropagation (decision-focused)
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P.. W, E., D., M., Tambe. AAAI 2020.

Wang, S., C., P., D.-V.,, Tambe. NeurlPS 2021.
Xu, P., C., F,, Tambe. UAI 2021.

Byun, P. ICLR 2022.

Work on noisy rewards (ongoing)



How to estimate deterrence from ranger patrols?

features
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Xu, P., P, D., W., R., Tambe. arXiv, 2020.



How to estimate deterrence from ranger patrols?
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Xu, P., P, D., W., R., Tambe. arXiv, 2020.



Visualization of ASPE
(Parkwide) _
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Guo, Xu, P., Davies, Tambe, et al. (in prep)
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Questions

1. Other data with a shock/disruption?
2. PAs with aligned patrolling and camera trap data”

3. Better ways to infer poaching levels from patrol outcomes



