
Using Property Elicitation to Understand the Impacts
of Fairness Regularizers

Jessie Finocchiaro1

1Center for Research on Computation and Society, Harvard University,
jessie@seas.harvard.edu

Abstract

Predictive algorithms are often trained by optimizing some loss function, to which
regularization functions are added to impose a penalty for violating constraints. As
expected, the addition of such regularization functions can change the minimizer of
the objective. It is not well-understood which regularizers change the minimizer of
the loss, and, when the minimizer does change, how it changes. We use property
elicitation to take first steps towards understanding the joint relationship between the
loss, regularization functions, and the optimal decision for a given problem instance.
In particular, we give a necessary and sufficient condition on loss and regularizer pairs
for when a property changes with the addition of the regularizer, and examine some
commonly used regularizers satisfying this condition from the fair machine learning
literature. We empirically demonstrate how algorithmic decision-making changes as a
function of both data distribution changes and hardness of the constraints.

1 Introduction

Machine learning is increasingly being used for prediction and resource allocation tasks per-
taining to human livelihood; algorithms often make predictions based on patterns in historical
data to make or supplement decisions about future events. For example, algorithms are com-
monly used to determine a whether or not a loan applicant should receive a loan [2, 34, 35],
estimate a patient’s risk of heart disease [15, 28, 32], and estimate need for public assis-
tance [24], among other settings. Typically, an algorithm tries to predict something like the
probability of an applicant repaying the loan if granted one, and then uses this prediction
to assign a treatment to the applicant, such as granting or not granting a loan. Implicit
in this model is the use of an underlying distribution to assign a treatment by computing
some underlying summary statistic, or property, of the distribution over outcomes. Prop-
erty elicitation studies the relationship between the choice of objective function, treatment
assignments, and various statistics. For example, minimizing squared loss corresponds to
predicting the expected value of the outcome (the probability of repayment) and deciding
whether or not to give a loan based on the expected value being above a given threshold.
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This contrasts with minimizing the 0-1 loss, which corresponds to learning the mode, of
whether the person is more likely than not to repay a loan, and the assigned treatment is
simply the decision to grant a loan.

In most practical optimization and allocation tasks, however, one faces constraints on the
treatment space, especially when the treatments impact human livelihood and when resources
are scarce. In particular, fairness constraints are often employed to enforce the (approxi-
mately) equal algorithmic treatment of different predefined groups. Instead of minimizing the
original loss function, these algorithms often instead minimize loss + weight * regularizer,
where the regularization term adds a penalty for violating certain desiderata about community-
level outcomes.

However, to date, there is little understanding of how adding regularization functions
into the optimization problem changes the property of the data distribution learned. We
give a necessary and sufficient condition for regularizers to preserve an elicited property: the
property elicited by the fairness regularizer must be equivalent to the property elicited by
the original loss. However, this condition is rather strong: equivalence holds regardless of the
underlying data distribution. Therefore, we further characterize for which data distributions
the optimal treatments differ or are the same. We demonstrate our results on group fairness
regularizers, though other regularization functions can be used as well (e.g., [29]).

To this end, we introduce the notion of regularized property elicitation, and what it means
for two properties to be equivalent. In Theorem 1 we show that, under mild conditions on
the regularizer, a regularized property is equivalent to the original property if and only if the
property elicited by the regularizer is equivalent to the original property. We apply Theo-
rem 1 to a handful of popular fairness regularizers– the absolute difference of demographic
parity, expected equality of opportunity, and equalized false positive rates– and demonstrate
they are not equivalent to cost-sensitive classifications. However, it is not necessarily the case
that a regularizer changes the elicited property: many additive regularizers yield regularized
properties equivalent to the original, namely (multi)calibration and bounded group loss.1

In these cases, while the property does not change, using the regularizer is still effective
because of practical limitations on the experessivity of the hypothesis class H, among other
optimization challenges. It does suggest in some sense that these equivalent regularizers
value “accuracy as fairness,” in line with sentiment from the original works.

In § 3, we present Theorem 1, which gives the necessary and sufficient condition for the
equivalence of properties, and in § 4 demonstrate these conditions on common fairness reg-
ularizers for binary classification. For those regularizers that do change an elicited property,
we additionally provide examples and geometric intuition about for which data distributions
the regularizers change (or do not change) the optimal decision, enforcing the imposed con-
straints. Finally, in § 5, we demonstrate our results with empirical evaluation on synthetic
data, a heart attack risk analysis dataset [32], and the German lending dataset [21].

1.1 Literature review

In machine learning, a variety of pre-, in-, and post-processing techniques have emerged
in recent years to make algorithmic decision-making more fair or equitable. We focus on

1We are not assigning a value judgment to whether or not a regularizer changes a property.
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one algorithmic aspect of in-processing wherein one modifies the learning algorithm itself
by adding a soft constraint to the objective function, which is some weighted metric of the
fairness violation. The addition of fairness regularizers is one common approach to try to
improve algorithmic decision-making in practice, though their effects are generally not well-
understood (cf. [3, 4, 7, 8, 14, 18, 19, 22, 37]). While many proposed fairness metrics are
situated in binary classification settings, extensions beyond the binary setting have been
studied more recently [7, 9, 23, 37, 38]. Our framework is general enough to handle a variety
of prediction tasks and regularizers beyond the fair machine learning literature.

We study the impact of regularization functions on the “right” decision an algorithm
should make as a function of the underlying data distribution through the lens of property
elicitation. Property elicitation is well understood on an individual basis for a variety of dis-
crete prediction tasks [10, 25, 26, 27] and continuous estimation problems [6, 11, 12, 33, 36]
on an individual level. Recently, Jung et al. [20] and Noarov and Roth [30] relate property
elicitation to the notion of multicalibration. These works extend the canonical understand-
ing of multicalibration to estimate values beyond the mean, and provide (multicalibrated)
algorithms to estimate higher moments, showing a strong equivalence between calibration
and property elicitation. These results align with some of the intuition provided in Theo-
rem 1, but our result goes beyond the scope of calibration as a fairness concept. Regularizers
considering community-level outcomes and group membership requires we extend traditional
notions of property elicitation.

2 Background

We are primarily concerned with evaluating the optimal treatment for various prediction
tasks. Consider an agent i ∈ {1, 2, . . . ,m} = [m] who will achieve some outcome y(i) ∈ Y
with probability p(i) ∈ ∆Y , where ∆Y is the simplex over a finite set of outcomes Y . A
central decision-maker (often a principal or algorithm) assigns a treatment t(i) ∈ T to the
agent, and their error is scored according to a loss function L : T ×Y → R+. As shorthand,
denote L(t(i); p(i)) := EY∼p(i)L(t

(i), Y ) as the expected loss over p(i). Moreover, we assume

each agent i is a member of a group s(i) ∈ S, and want to ensure agents of different groups
are treated fairly by the centralized decision-maker. Let ng := |{i ∈ [m] : s(i) = g}| be the
number of agents belonging to group g, which we assume is positive for each g ∈ S. Often,
we are concerned with possibly set-valued functions, Γ : ∆Y → 2T \ {∅}; for shorthand, we
denote this Γ : ∆Y ⇒ T .

In supervised machine learning, predictions are made by learning a hypothesis function
h : X → T mapping features x ∈ X to treatments t ∈ T . We assume T is a finite set unless
otherwise stated. If the class of hypotheses H is sufficiently expressive, then t encapsulates
how the optimal hypothesis should assign treatment, given an input x. Equivalently, we are
concerned with optimal decisions under p(i) = Pr[Y | X = x(i)]. For simplicity, we abstract
away X and proceed with p(i) ∈ ∆Y and t(i) ∈ T in the sequel.
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2.1 Regularization functions

Often, “fair” algorithms constrain optimization to ensure certain desiderata are satisfied.
However, some standard optimization algorithms such as stochastic gradient descent often
soften these constraints, adding an additional penalty to the loss function for violating the
constraints. We study how the addition of regularization functions R : T m×Sm×∆m

Y → R+

(henceforth: regularizers) change the optimal treatment assigned by minimizing the expected
loss.

For example, imposing group fairness constraints, one might aim to ensure treatments are
independent of the sensitive statistic (as in demographic parity) or treatments are calibrated
to line up with the true probabilities of positive classification (as in multicalibration). In
this setting, given a collection of individuals {(s(i), p(i))}, we aim to optimize

min
t∈T m

LR,λ(t; s;p) := (1− λ)

[
1

m

m∑
i=1

L(t(i); p(i))

]
︸ ︷︷ ︸
expected loss over m agents

+λR(t; s;p) . (1)

Because the regularizer might not be additive in t, the treatment of an individual is not
necessarily independent of the treatment of others. This necessitates the optimization of
t ∈ T m rather than considering each data point individually, as is standard in unregularized
property elicitation.

2.2 Property elicitation

When making predictions, a decision-maker often aims to learn a property Γ : ∆Y ⇒ T ,
which is simply a function mapping probability distributions to treatments. Examples of
commonly sought properties include the expected value EV (p) = {EY∼p[Y ]}, the mode
mode(p) = arg maxy py, α-quantiles, and rankings.

Definition 1 (Property, elicits). A property is a function Γ : ∆Y ⇒ T mapping probability
distributions to reports. If |T | is finite, we call Γ a finite property. Moreover, a minimizable2

loss L : T × Y → R+ elicits a property Γ if, for all p ∈ ∆Y ,

Γ(p) = arg min
t∈T

L(t; p) .

Conversely, we denote the level set of a property Γt = {p ∈ ∆Y | t ∈ Γ(p)} as the set of
distributions yielding the same optimal treatment.

Throughout, we assume that properties are nonredundant, meaning that the level set Γt

is full-dimensional3 for all t ∈ T and for each p ∈ relint(Γ̂t), we have |Γ̂(p)| = 1. This
precludes the consideration of treatments that are rarely optimal, or only optimal if and
only if another treatment is optimal as well.

Every minimizable loss elicits some property; we denote prop[L] as the (unique) property
elicited by the loss L. For example, the squared loss elicits the expected value [6, 33], and

2One that attains the infimum in its first argument for all y ∈ Y
3The affine dimension of the set equals the affine dimension of the simplex
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the level set Γ0 = {p ∈ ∆Y : Ep[Y ] = {0}} of the expected value is the set of distributions
with zero mean. We will later study the geometry of the level sets of various properties
to characterize the how the minimizers of unregularized losses differ from those of their
regularized counterparts. In order to do so, we consider the property Γ evaluated on a
population. Given p ∈ ∆m

Y , we consider the extension Γ̂(p) := [Γ(p(i))]i with level sets

Γ̂t :=
⋂

i{p ∈ ∆m
Y | t(i) ∈ Γ(p(i))}.

We now extend Definition 1 to include population-level reports for loss functions to
encapsulate the case where the regularizer is not additive in t and/or is dependent on s.

Definition 2 (Regularized property elicitation). A regularized property is a function ΘR,λ :
Sm × ∆m

Y ⇒ T m mapping beliefs over outcomes to population-level treatments. Similarly,
an objective function L regularized by R (weighted by λ), denoted LR,λ, elicits a regularized
property if, for all s ∈ Sm and p ∈ ∆m

Y ,

ΘR,λ(s;p) = arg min
t∈T m

LR,λ(t; s;p).

We let prop[LR,λ] denote the regularized property elicited by LR,λ.

Denoting the level set of a regularized property requires some nuance because we are
concerned with the change in optimal treatments as a function outcome distributions p, but
the regularized property is a function of s as well as p. Therefore, we denote the level set
ΘR,λ

t;s = {p ∈ ∆m
Y | t ∈ ΘR,λ(s;p)} denote the level set of the regularized property ΘR,λ.

If s is clear from context, we sometimes omit it and write ΘR,λ
t . We now define a trivial,

constant regularizer R as non-enforcing, since it never enforces any constraints.

Definition 3. A regularizer R is nonenforcing if prop[R]t = ∆m
Y for all t ∈ T , and enforcing

otherwise.

3 Equivalence of (regularized) properties

With an understanding of regularized property elicitation, we are now equipped to ask when
a property “changes” with the addition of a regularizer to a loss; this requires us to consider
what it means for properties to be unchanged, or equivalent.

Definition 4 (Equivalence of properties). A property Γ : ∆Y ⇒ T is equivalent to a regu-
larized property Θ : Sm ×∆m

Y ⇒ T m on s (denoted Γ ≡s Θ or Γ̂ ≡s Θ) if, for all p ∈ ∆m
Y ,

we have t ∈ Γ(p) ⇐⇒ t ∈ Θ(s;p).

In general, but particularly for large sets of agents, equivalence of a regularized property
to its unregularized counterpart is a rather strong condition: when there is a “universally
fair” report, equivalence holds if (and only if) the regularizer elicits essentially the same
property as the original loss.

The proof relies on the relationship between subgradients of the Bayes risk and property
values [13, Theorem 4.5]: if L elicits Γ, then there is a choice of subgradients D of the Bayes
risk of L, L(p) := inft∈T m L(t;p) such that there is a bijection from property values to D.
Therefore, points of nondifferentiability of L form the intersection of level sets.
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Theorem 1. Fix λ ∈ (0, 1) and s ∈ Sm. Let loss L elicit Γ, LR,λ elicit Θ, and R elicit
H. Then (1) Γ̂ ≡s H =⇒ Γ̂ ≡s Θ. (2) If H is nonredundant, then additionally assume
Ht ∩ Γ̂t ∩Θt ̸= ∅ for all t ∈ T . If Γ̂ ≡s Θ, then R is nonenforcing or Γ̂ ≡s H.

Proof. (1) The first statement is immediate as H ≡s Γ̂ implies

t ∈ arg min
t′

R(t′; s;p) ⇐⇒ t ∈ arg min
t′
L(t′;p)

⇐⇒ t ∈ arg min
t′
λR(t′; s;p) ⇐⇒ t ∈ arg min

t′
(1− λ)L(t′;p)

=⇒ t ∈ arg min
t′
λR(t′; s;p) + (1− λ)L(t′;p)

Now t ∈ Γ̂(p) =⇒ t ∈ Θ(p). If t ∈ Θ(p), then consider two cases: if t ∈ H(p), we are
done by assumption. If t ̸∈ H(p), then t ̸∈ Γ̂(p). However, the two are equivalent, so there
is some t′ ∈ H(p) ∩ Γ̂(p), so we contradict t ∈ Θ(p).

(2) Observe that since T is finite, so is T m, and the function L : p 7→ inft∈T m L(t;p) is
piecewise linear and concave, as it is the pointwise infimum of a finite set of affine functions
(since expectation is linear). Moreover, the function ηLt : p 7→ L(t;p) is affine and supports
L on Γ̂t for every t ∈ T m. Observe that if Θ ≡s Γ̂, then η

L
t and ηL

R,λ

t support L and LR,λ

respectively on the same sets for all t ∈ T m.
Consider nondiff(f : ∆m

Y → R+) := {p ∈ ∆m
Y | f is not differentiable at p}. Since

λ ∈ (0, 1), then nondiff(LR) = nondiff(L) ∪ nondiff(R) 4. The assumption Γ ≡s Θ
implies that nondiff(L) = nondiff(LR), which in turn implies nondiff(R) ⊆ nondiff(L).
If R is enforcing and nondiff(R) ⊊ nondiff(L), there must be some t′ ∈ T m such that
Ht′ = ∅, and therefore, H is redundant.

Consider p′ ∈ nondiff(L) \ nondiff(R). Observe that p′ ∈ Γ̂t ∩ Γ̂t′ for some t ̸= t′.
There exists a p ∈ B(p′, ϵ) for small ∥ϵ∥ > 0 such that ηL

R,λ

t supports LR,λ on conv({p, p′}).

p ∈ Γ̂t′ \ Γ̂t ⇐⇒ p ∈ Θt′ \Θt

=⇒ (1− λ)L(t′;p) + λR(t′;p) < (1− λ)L(t;p) + λR(t;p)

⇐⇒ (1− λ)(L(t′;p′) + cT ϵ) + λR(t′;p) < (1− λ)(L(t;p′) + dT ϵ) + λR(t;p) L affine on conv({p, p′})
=⇒ λR(t′;p) ≤ λR(t;p) ϵ→ 0 ,

which implies p ∈ Ht′ , and therefore, Ht′ ̸= ∅, yielding a contradiction.
Therefore, we must either have R nonenforcing or nondiff(R) = nondiff(L), the lat-

ter of which implies that H is nonredundant. We avoid permutations of level sets by the
assumption that Ht ∩ Γt ∩Θt is nonempty, and must have equivalence of the properties.

Intuitively, Theorem 1 says that the property elicited by a regularized loss function is the
same as the unregularized loss if and only if the regularizer elicits the same property as the
loss itself. Since loss functions are measurements of accuracy, then equivalence of properties
implies an algorithm values accuracy as fairness.

4This is true regardless of λ ∈ (0, 1); see [10, Lemma 5]

6



4 (Non)equivalence of common fairness metrics for bi-

nary classification

We now evaluate a handful of common fairness regularizers, and apply Theorem 1 to show
nonequivalence between binary classification tasks and their regularized counterparts. For
each regularizer, we give restrictions on ∆m

Y such that the regularized property is equivalent
to the original under these restrictions.

To build intuition, we examine simple cases of how regularizers change elicited properties
with populations of m = 2 agents belonging to different groups s = (a, b).

Figure 1 provides some additional intuition for the proof of Theorem 1. Each subfigure
gives the level sets of the property elicited by the mode regularized by the demographic parity
violation (DP), where each point in [0, 1]2 represents p ∈ ∆2

Y by (Prp(1) [Y = 1],Prp(2) [Y =
1]). Each colored cell depicts a different level set of a regularized property ΘDP,λ. This
regularized property is overlaid on the (unregularized) mode, so that, upon visual inspection,
one observes the regions where the two properties differ. As λ→ 0, the regularized property
becomes increasingly similar to the unregularized, and as λ → 1, the regularized property
increasingly resembles the property elicited by R.

4.1 Demographic parity

In the context of binary classification, one might be interested in regularizing their loss with
the demographic parity violation, measured by the absolute difference of the rates at which
agents are assigned the positive treatment from each of two groups. Any treatment that
assigns the positive treatment at the same rate optimizes the demographic parity regularizer,
which is not equivalent to the mode. That is, H(s;p) ⊇ {0, 1} for all p ∈ ∆m

Y and s ∈ Sm.
Thus, if S = {a, b}5, we can apply Theorem 1 to conclude the DP-regularized mode is not
equivalent to the unregularized mode.

LDP,λ(t; s;p) =
1− λ

m

m∑
i=1

L(t(i); p(i)) + λ

∣∣∣∣∣ 1na

∑
i:s(i)=a

t(i) − 1

nb

∑
i:s(i)=b

t(i)

∣∣∣∣∣ (DP)

Now, with T = {0, 1}, if L is the 0-1 loss6, we can evaluate LDP,λ for each treatment in
T 2 = {(1, 1), (0, 1), (1, 0), (0, 0)}.

LDP,λ((1, 1); (p(1), p(2))) =
1− λ

2

[
(1− p(1)) + (1− p(2))

]
LDP,λ((0, 1); (p(1), p(2))) =

1− λ

2

[
p(1) + (1− p(2))

]
+ λ

LDP,λ((1, 0); (p(1), p(2))) =
1− λ

2

[
(1− p(1)) + p(2)

]
+ λ

LDP,λ((0, 0); (p(1), p(2))) =
1− λ

2

[
p(1) + p(2)

]
.

5This is simply for ease of exposition, and can be relaxed.
6These derivations also hold if L is squared loss, hinge loss, and many other losses for binary classification.
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These expected losses now enable us to study the level sets ΘDP,λ
t;s = {p ∈ ∆m

Y | t ∈
ΘDP,λ(s;p)}.

We have have (0, 0) ∈ arg mint∈T 2 if

1− λ

2

[
(1− p(1)) + (1− p(2))

]
≤ 1− λ

2

[
p(1) + (1− p(2))

]
+ λ ⇐⇒ 1− 3λ

2(1− λ)
≤ p(1)

1− λ

2

[
(1− p(1)) + (1− p(2))

]
≤ 1− λ

2

[
p(2) + (1− p(1))

]
+ λ ⇐⇒ 1− 3λ

2(1− λ)
≤ p(2)

1− λ

2

[
(1− p(1)) + (1− p(2))

]
≤ 1− λ

2

[
p(1) + p(2)

]
⇐⇒ p(1) + p(2) ≤ 1 .

Therefore, the level set ΘDP,λ
(0,0) can be described by the polyhedron

ΘDP,λ
(0,0) =

p ∈ [0, 1]2 |

 0 −1 1−3λ
2(1−λ)

−1 0 1−3λ
2(1−λ)

1 −1 1

p(1)p(2)

1

 ≥ 0

 .

Observe that the final constraint is actually one on the marginal P [Y ]: the expected outcome
over the whole population should be less likely to be 1 than 0. We can evaluate the rest of
the level sets in a similar manner.

Now let us gain some geometric intuition for how these level sets change by referencing
Figure 1. For two agents belonging to different groups, each point in the figure represents
a pair p := (p(1), p(2)) of true probabilities for the two agents. The pair p ∈ [0, 1]2, and the
region [0, 1]2 can be divided into up to |T m| regions for which each t ∈ T m is contained in
ΘDP,λ(p). The sequence of figures in Figure 1 denotes the level sets of ΘDP,λ as one varies
λ ∈ [0, 1]. For intuition, one can observe that the regions where the players receive the same
treatment (blue and red) grows as λ increases, starting with 1/2 of the [0, 1]2 space, and
increasing to all of [0, 1]2 as λ→ 1.

We now turn our attention towards the regions of ∆m
Y where the regularized and unreg-

ularized properties are equivalent with a demographic parity regularizer. First, we observe
that if uniform treatment of a population is optimal on the unregularized property, it is also
optimal on the regularized property.

Proposition 1. Fix λ ∈ (0, 1). Let L elicit Γ, LR,λ elicit Θ, and R elicit H. For all t ∈ T m

and s ∈ Sm, Γ̂t ∩Ht;s ⊆ Θt.

Proof. p ∈ Γ̂t∩Ht;s =⇒ L(t;p) ≤ L(t′;p) andR(t; s;p) ≤ R(t′; s;p) for all t′ ∈ T m, which
in turn implies L(t;p)+R(t; s;p) ≤ L(t′;p)+R(t′; s;p) =⇒ (1−λ)L(t;p)+λR(t; s;p) ≤
(1− λ)L(t′;p) + λR(t′; s;p) for all t′ ∈ T m.

We apply this result to the “universally fair” reports via demographic parity 0 and 1.

Corollary 1. Fix s ∈ Sm and λ ∈ [0, 1]. Let L elicit Γ and LDP,λ elicit Θ. Γ̂0 ⊆ Θ0;s.

Moreover, Γ̂1 ⊆ Θs;1.

Proof. Let H := prop[LDP,λ]. For all p ∈ ∆m
Y , we have {0,1} ⊆ H(p). Therefore, Γ̂0∩H0 =

Γ̂0 (and similarly with Γ̂1 ∩H1). Therefore, Γ̂0 = Γ̂0∩H0 ⊆ Θ0 and Γ̂1 = Γ̂1 ∩H1 ⊆ Θ1.
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Figure 1: Visualizing the level sets of the DP -regularized property ΘDP,λ for different values
of λ ∈ [0, 1], where m = 2 and s = (a, b). Each point (p(1), p(2)) in a square represents
(Prp(1) [Y = 1],Prp(2) [Y = 1]), and each colored cell represents sets of (p(1), p(2)) pairs such
that the optimal treatment is the same for all points in the cell. For example, the magenta
cell (lower right) is the set of distributions where the decision-maker prefers to attribute the
positive treatment (t(i) = 1) to the first agent, and the negative treatment (t(i) = 0) to the
second agent.

We now turn our attention to the opposite case: if, while regularized, treating different
groups differently (and uniformly within the groups) is optimal, then it is also optimal in
the unregularized setting. In particular, this holds for treatments maximizing R.

Proposition 2. Fix s ∈ {a, b}m and λ ∈ [0, 1]. Fix t = 1a (or 1b without loss of generality).
Let L elicit Γ over outcomes Y = {0, 1}. ΘDP,λ

t;s ⊆ Γ̂t.

Proof. With s fixed, t ∈ arg maxt′ DP (t
′;p) for all p ∈ ∆m

Y . Therefore,

(1− λ)L(t;p) + λDP (t;p) ≤ (1− λ)L(t′;p) + λDP (t′;p)∀t′

=⇒ (1− λ)L(t;p) ≤ (1− λ)L(t′;p) ∀t′ ,
which implies the result.

With that, we partially characterize the relationship between the unregularized and DP-
regularized level sets for standard binary classification. In the simple case withm = 2 agents,
this characterization is complete: if the optimal treatment is uniform, it stays uniform.
Moreover, if the most “unfair” treatment wherein all the members of one group receive the
treatment, and none of the second group is optimal in the regularized setting, it is also
optimal in the unregularized setting. In any other setting, the optimal treatment changes
with the addition of a DP regularizer.

4.2 Equalized FPR

Following a similar process to § 4.1, we now consider the regularizer that measures the
absolute difference of false positive rates across groups, where the false positive rate is given
by FPRg(t; s;p) = Pr[Y (i) = 0 | t(i) = 1, s(i) = g] = 1

|{i:t(i)=1,s(i)=g}|
∑

i:s(i)=g,t(i)=1(1 − p(i)).

The optimization problem then becomes

LFPR,λ(t; s;p) =
1− λ

m

∑
i

L(t(i); p(i)) + λ |FPRa(t; s;p)− FPRb(t; s;p)| (FPR)

9



Figure 2: Visualizing the level sets of the FPR-regularized property ΘFPR,λ for different
values of λ ∈ [0, 1], where m = 2 and s = (a, b). Each point (p(1), p(2)) in a square represents
(Prp(1) [Y = 1],Prp(2) [Y = 1]), and each colored cell represents sets of (p(1), p(2)) pairs such
that the optimal treatment is the same for all points in the cell. For example, the magenta
cell (lower right) is the set of distributions where the decision-maker prefers to attribute the
positive treatment (t(1) = 1) to the first, and the negative treatment (t(2) = 0) to the second
agent.

The FPR regularizer computes the difference of false positive rates between groups, so
one can observe that the false positive rate of a group is is reduced by assigning more negative
treatments t(i) = 0. We can see in Figure 2 that the FPR regularizer then makes it worse
for an algorithm to assign the positive treatment to an agent i even if p(i) is slightly greater
than 1/2, as marked by the ⋆ in Figure 2(R).

As in § 4.1, we can apply Proposition 1 to show that if assigning everyone the negative
treatment is optimal in the unregularized setting, it is also the optimal treatment with the
FPR regularizer.

Corollary 2. Fix s ∈ Sm. Let L elicit Γ and LFPR,λ elicit ΘFPR,λ. Γ̂0 ⊆ ΘFPR,λ
0;s .

Proof. For all p ∈ ∆m
Y , we have 0 ∈ H(p). Therefore Γ̂0 = Γ̂0 ∩H0;s ⊆ Θ0 by Proposition 1.

4.3 Expected equality of opportunity

While standard equality of opportunity (cf. [16]) requires access to observed labels, we are
interested in equality of opportunity in expectation, and consider a variant that does not
require access to labels proposed by Blandin and Kash [5]. Consider the treatment space
T = {0, 1}m and regularizer R(t; s;p) = |EEOa(t; s;p)− EEOb(t; s;p)|, where

EEOg(t; s;p; g) = Pr
i∼[m]

[t(i) = 1 | y(i) = 1, s(i) = g] (EEO)

=
Pr[Y (i) = 1 | t(i) = 1, s(i) = g] Pr[t(i) = 1]

Pr[Y (i) = 1]

=

(
1

|{i:s(i)=g,t(i)=1}|
∑

i:t(i)=1,s(i)=g(p
(i))

)
(
∑

i t
(i))∑

i p
(i)

.
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Figure 3: Level sets of the EEO-regularized mode on Y = {0, 1}.

We can apply Proposition 1 to show that uniform treatment being optimal in the unreg-
ularized case implies it is also optimal with the EEO regularizer as well.

Corollary 3. Fix s ∈ Sm, and let L elicit Γ over outcomes Y = {0, 1} and LEEO,λ elicit
ΘEEO,λ. Γ̂0 ⊆ ΘEEO,λ

0 .

4.4 Equivalent regularizers

In the previous section, we use Theorem 1 to show the nonequivalence of reguliarized proper-
ties, and examine a few common regularizers to show some restrictions that recover equiva-
lence under certain distributional assumptions on the outcomes. We examine two regularizers
that elicit the mode, and thus the regularized property is equivalent to the unregularized
on all of ∆m

Y : (multi)calibration [17, 20, 30, 31] and bounded group loss [1]. In some sense,
this suggests that these regularizers value accuracy as fairness. If models are as accurate as
they could possibly be, the most “fair” treatments to assign are also the most accurate. In
practice, the regularizers mitigate unfairness arising from limited expressivity of the model:
if the model was perfectly expressive and could predict the mode perfectly, it would assign
the same treatments even with heavy penalties for “unfairness.”

Calibration Calibration constraints ensure that the predicted value t(i) most closely lines
up with the true probability p(i), regularizing the loss by the sums of the absolute differences
|t(i) − p(i)|. The absolute difference elicits the 1/2-quantile, which is also the mode on
Y = {0, 1}, so the regularizer R(t; s;p) =

∑
g

1
ng

∑
i:s(i)=g |t(i) − p(i)| elicits the mode in

binary classification problems.
Formally, consider the objective

LCal,λ(t; s;p) =
1− λ

m

∑
i

L(t(i); p(i)) + λ
∑
g

1

ng

∑
i:s(i)=g

|t(i) − p(i)| (Cal)

This constraint does not include any comparisons across group averages, so the optimal
report is obtained by giving individual predictions. In binary classification, the 1/2-quantile
is the same as the mode, so the property is given ΘCal,λ(s;p) = mode(p).

This observation holds even with different weightings for specific subgroups, as in multi-
calibration a lá Hebert-Johnson et al. [17].
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Bounded group loss We now consider the constraint on bounded group loss: EY |S=sL(r, Y ) <
ϵ for all s ∈ S, introduced by Agarwal et al. [1]. To model bounded group loss as a soft
constraint, we simply weigh the expected loss conditioned on the group size as a regularizer,
so accuracy is more incentivized on small groups.

LBGL,λ(t; s;p) =
1− λ

m

∑
i

L(t(i); p(i)) +
∑
g

λ

ng

∑
i:s(i)=g

L(t(i); p(i))

Adding this constraint as a fairness regularizer does not change the property elicited (e.g.,
ΘBGL,λ(s;p) = Γ̂(p) for all p ∈ ∆m

Y ). In part this is because it still encourages the model
to learn what is best for each individual in the population, where other constraints add a
regularizer that compares the deviation between two groups.

Corollary 4. Let L elicit Γ. Γ̂ ≡s Θ
BGL,λ for all s ∈ Sm and λ ∈ [0, 1].

Proof. The regularizer R(t; s;p) :=
∑

g
1
ng

∑
i:s(i)=g L(t

(i); p(i)) is additive in t, and elicits the

same property as L since it is simply a reweighing of L.

5 Experiments

While property elicitation allows us to reason about what a treatment an algorithm should
assign, we examine whether or not these decisions are consistent with the treatments assigned
by algorithms in practice with simple models. We first generate a set of synthetic datasets to
understand how a classifier’s decisions change as one navigates the space of data distributions.
Moving through this space demonstrates the relationship between loss and regularizer in
the synthetic setting as the data distribution over changes in ∆m

Y . We then evaluate the
effect of the regularizer weight λ on treatment assignment in cardiovascular disease risk
prediction [32] and lending [21] datasets, where the data distribution is fixed. In both
settings, we train a linear classifier over 30 trials with binary cross entropy loss with (a)
no regularizer, (b) demographic parity difference (c) false positive rate difference (d) false
negative rate difference, (e) equality of opportunity difference, and compute the fairness
violations of the classifier trained on each of the four losses, where elicited property values
are shown in Figure 8.

5.1 Effect of the data distribution

Recall that we applied Theorem 1 and its intuition in Figures 1, 2, and 3 to conclude the
mode is not equivalent to ΘR,λ for various regularizers including (DP), (FPR), False Negative
Rates (in § A), and Expected Equality of Opportunity (EEO). However, the equivalence
of regularized properties and their unregularized counterparts is a rather strong condition,
as pointwise equivalence must hold for every set of data distributions. In practice, the true
data distribution may be somewhere in the space of distributions where the property value
does not change for the chosen value of λ. With the knowledge that equivalent distributions
have no endogeneous differences in hand, we generate a set of synthetic distributions to
understand tradeoffs to regularizers as we move though the space of data distributions.
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Figure 4: Regularizer values with synthetic data generated via Pr[Y = 1 | g = a] = 0.3 and
Pr[Y = 1 | g = b] on the horizontal axis.

We generate generate synthetic datasets for binary classification as follows: there are
two groups, S = {a, b} with Pr[a] = Pr[b] = 1/2, a member of each group has Pr[Y = 1 |
S = g] = pg ∈ [0, 1]. Each set of agents is represented by x = {pa, pb, r1, . . . , rk}, where
r1, . . . , rk are uniformly random values in [−1, 1]. We then train a logistic regressor via
stochastic gradient descent (30 trials with learning rate = 0.001, 1500 epochs, 10000 (pa, pb)
pairs, k = 3), that minimizes the binary cross entropy loss regularized by either demographic
parity, false positive rate, false negative rate, or difference in equality of opportunity with
λ = 0.15. The simplicity of features is intentional: the “perfect” decision should be fully
realizable in the unregularized setting, so the benchmark accuracy should be relatively high.
Fixing the probability for a positive outcome pa = 0.3 for a member of group a, we vary
the probability of a positive outcome pb for a member of group b to observe how fairness
violations change as the underlying data distribution changes. For intuition, by design of
the datasets, we reason about the “average member” of the population and reference the
level sets drawn in Figure 5. Fixing pa and varying pb can be thought of as understanding
what happens in decision making as one moves vertically up the line {(0.3, pb) | pb ∈ [0, 1]},
denoted by the black dashed lines in Figure 5. In Figure 4 (L), we observe a a significant
difference in DP violation rate only when pb ≥ 1/2, in line with the intuition in Figure ??.
Similarly, the false positive rate violation gap “opens up” for pb ∈ [0.5, 0.65] in Figure 4
(ML), in line with Figure 5, and no significant different in FNR violations is observed as
decision-making on this axis does not change in Figure 5. Finally, for EEO, this gap opens
for pb ≥ 1/2, then closes again later.

5.2 The effect of choice of λ

Conversely to the interpretation of the experiments in § 5.1, to gain intuition for why decisions
might change as a function of λ, we now consider each dataset representing a (pa, pb) point
in one of Figures 1–3, and consider how the level set it belongs to changes as one changes λ.
We examine two datasets, German lending [21] and heart disease risk prediction [32]. For
both datasets, we train 30 linear models with 15000 epochs, learning rate of 0.001.

German lending In the German lending dataset, we treat age as the sensitive attribute,
using an indicator thresholded at 25 years old. On the entire dataset, we have Pr[Y = 1 |
S ≥ 25] = 0.728 and Pr[Y = 1 | S < 25] = 0.578, and an unbalanced group representation
with Pr[S < 25] = 0.191.
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Figure 5: Fixing pa = 0.3, examining how the property value changes as a function of pb for
different regularizers. Demographic parity results in different decisions only if pb ∈ [1/2, 3/4],
FPR if pb ∈ [1/2, 2/3], FNR has essentially the same property values on the line pa = 0.3,
and EEO leads to a small region where optimal decisions change for pb ∈ [1/2, 2/3].

Figure 6: Effect of λ on regularizer values on the German lending dataset [21]. Because the
(pa, pb) point summarizing group differences in the dataset are at a point where regularized
decisions are the same as unregluarized decisions, it is unsurprising that regularizers do not
significantly reduce unfairness, regardless of λ.

Perhaps surprisingly, we observe little impact of the choice of λ; moreover, in Figure 6,
we observe no significant difference in the performance across fairness metrics from regular-
ized and unregularized losses. Upon closer inspection, this can be explained partly by the
observation that the “average” group members (pa, pb) = (0.728, 0.578): a distribution that
warrants treating the average member of each subpopulation the same, which aligns with
most fairness regularizers. This is demonstrated in Figure 8, where the (pa, pb) coordinate is
denoted by a g, for German. For every subfigure in Figure 8, the g coordinate is in the blue
cell, implying that the “average member” of each group receives the same treatment with
a fairness-regularized loss as with an unregularized loss, suggesting that for the probability
distribution underlying this dataset, data subjects are already treated approximately fairly
by the unregularized loss.

Heart disease risk In the heart disease risk prediction dataset, we treat sex as the sen-
sitive attribute, and observe Pr[Y = 1 | S = 0] = 0.75 and Pr[Y = 1 | S = 1] = 0.449 yields
a pa, pb pair warranting different treatments for the “average” member of each group, and
Pr[S = 1] = 0.63 for a more sensitive-attribute-balanced dataset. The relationship between
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Figure 7: Distributions of accuracy and fairness violations in lending data. In general, it
seems the models are tending to make similar predictions, which often nearly equal medians.

Figure 8: The level sets of different regularized properties as λ changes. (Top to bottom: DP,
FPR, FNR, EEO). The g represents the “average” members of each group in the German
lending dataset, and h the heart disease risk dataset.
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Figure 9: Effect of λ on regularizer values on the heart disease risk dataset [32].

Figure 10: Distributions of accuracy and fairness violations in heart disease data. In gen-
eral, it seems the models are tending to make similar predictions, which often nearly equal
medians.

the optimal treatment of the “average” member of both groups as λ changes can be seen in
Figure 8, denoted by h.

Figure 9 shows the tradeoffs incurred by large weights on fairness violations, as accuracy
of regularized losses tends to drop for λ > 0.3, which aligns with some of the improvements
in fairness violations– namely for demographic parity and false positive rates. There is no
significant difference in the FNR violation, regardless of λ, and an increase in the EEO
violation; we conjecture this is due to numerical stability as the baseline EEO violation is
very small. In Figure 10 (R), this is supported by a higher range of EEO violations in the
regularized models.

6 Discussion and Conclusion

In this work, we extend the notion of property elicitation to consider regularized loss func-
tions, and give a necessary and sufficient condition on a regularizer to be equivalent to the
original property. We apply this condition to demonstrate the (non-)equivalence of proper-
ties with a handful of regularizers common in the fair machine learning literature. Finally,
we show how the choice and weight of regularization function can change decision-making
on synthetic data as well as the German lending and heart disease risk datasets.

Limitations and considerations The main intent of this work is to provide conceptual
insight about how fairness regularizers change algorithmic decision-making and predictions.
The insights provided rely on the hypothesis class being sufficiently expressive, and should
not be solely used to justify the use of a regularizer. The addition of a regularizer and
insights given are agnostic to the data itself and therefore agnostic to pre-processing and
post-processing of data. Additional pre- or post-processing of the data may change the
elicited property, though we leave this to future work.
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Future work There are many directions for future work. This work serves as a proof of
concept for the extension of property elicitation to accommodate regularization functions,
demonstrated on a handful of regularizers, but applying the necessary and sufficient condition
on the equivalence of properties under different regularizers and more general prediction
tasks remains an open direction of work. Moreover, it is important to understand how
model complexity as well as pre- and post-processing of data can affect results. Finally,
the addition of a regularizer seems to increase the complexity of the optimization problem
linearly in m. Understanding if there are more efficient ways to frame the optimization
problem for certain regularization functions or data distributions also remains an open line
of work.
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Figure 11: Visualizing the level sets of the FNR-regularized property ΘFNR,λ for different
values of λ ∈ [0, 1], where m = 2 and s = (a, b). Each point (p(1), p(2)) in a square represents
(Prp(1) [Y = 1],Prp(2) [Y = 1]), and each colored cell represents sets of (p(1), p(2)) pairs such
that the optimal treatment is the same for all points in the cell. For example, the magenta
cell is the set of distributions where the decision-maker prefers to attribute the positive
treatment (t(i) = 1) to the agent in group a, and the negative treatment (t(i) = 0) to the
agent in group b.

A Additional example of non-equivalent properties

A.1 Equalized FNR

Similarly, we consider false negative rates. Our objective is

LFNR,λ(t; s;p) =
1

m

∑
i

L(t(i), p(i)) + λ

∣∣∣∣∣∣ 1na

∑
i:s(i)=a,t(i)=0

p(i) − 1

nb

∑
i:s(i)=b,t(i)=0

p(i)

∣∣∣∣∣∣
Like the FPR regularizer, since the FNR regularizer computes the difference of false

negative rates between groups, one can observe that a way to reduce the false negative rate
of a group is to assign more positive treatments t(i) = 1. Again, we see in figure 11 that the
FNR regularizer then makes it worse for an algorithm to assign the negative treatment to
an agent i even if p(i) slightly less than 1/2.

Corollary 5. Let L : [0, 1] × {0, 1} → [0, 1] and ψ : r 7→ 1{r ≥ 1/2} indirectly elicit the
mode over Y = {0, 1} such that L(y, y) = 0, and let ΘFPR,λ := ψ ◦ prop[LFPR,λ]. Then
ΘFPR,λ is not equivalent to the mode for λ > 0.
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