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“This map provides unmatched clarity into the nature 
and distribution of agricultural land nationwide [and 
helps] provide decisive knowledge being used to 

design social protection policies aimed at improving the 
livelihoods of agrarian rural communities.”

Deliver
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Learning from limited labels:
Task-informed meta-learning

Task-Informed Meta-Learning for Agriculture

Figure 2. An illustration of the encoder, and the modulation of the
MAML learner’s hidden vectors using the encoder’s output. We
highlight the differing optimization regimes for the encoder and
the MAML learner – the encoder’s output remains static through
the MAML learner’s inner loop optimization.

of interest. This allows different weight initializations to
be learned depending on the tasks, allowing the model
to learn a wide distribution of tasks. Model-Agnostic
Meta-Learning (MAML) learns a set of model weights ✓
which is close to optimal for each of a variety of different
tasks, allowing the optimal weights for a specific task to be
reached with little data and/or few gradient steps. These
initial weights ✓ are updated by fine-tuning them on a
training task (inner loop training), yielding updated weights
✓0. A gradient for ✓ is then computed with respect to the
loss of the updated model, L✓0 . This gradient is then used
to update ✓ (outer loop training).

In the following sections, we first describe how we imple-
mented MAML in a geospatial context (Section 3.1) (fo-
cusing on how tasks are constructed) before describing the
TIML method in more detail (Section 3.2).

3.1. MAML in a geospatial context

As in previous work applying meta-learning to geospatial
data (Tseng et al., 2021b; Wang et al., 2020), we define
tasks spatially. Specifically, given a particular task we use
political boundaries (counties or countries) to separate a sin-
gle dataset into many different tasks. The intuition for this
is that agricultural practices (and land use) are influenced
by the policies and cultural practices of a region, which are
often defined along political boundaries (e.g., teff is a pop-
ular crop grown in Ethiopia and Eritrea but not bordering
countries). This makes political territories useful units when
conducting spatial analysis of a region (e.g. (Kimenyi et al.,
2014)). In addition, defining tasks in this way allows for
region-specific tasks to be defined. For example, some crops
may only be grown in certain parts of the world (e.g., cacao
is typically grown within 20 degrees of the equator), or data
collection efforts for specific crops may only have occurred

in certain areas. Spatially defined tasks mean that the model
can be trained to identify these regional crops when it is
looking at that region, and not elsewhere.

3.2. Task-Informed Meta-Learning

We build on model-agnostic meta-learning (Finn et al.,
2017), considering the case where there is additional task-
specific information that could inform the model, such as
the spatial relationships between tasks. Information such as
the spatial coordinates of a task remains static for all data-
points in the task, so is not useful to differentiate positive
and negative instances within tasks. However, it may be
useful to condition the model prior to inner loop training.

Algorithm 1 Task-Informed Meta-Learning

1: Require: p(T ): Distribution over tasks
2: Require: ↵, �: step size hyperparameters
3: randomly initialize meta model ✓m, task encoder ✓e
4: while not done do

5: Sample batch of tasks Ti ⇠ p(T ) with task informa-
tion ti

6: for all Ti, ti do

7: Generate task embeddings µi = f(ti; ✓e)
8: Evaluate r✓mLTi(f✓m , µi) with respect to K ex-

amples
9: Compute adapted meta parameters with gradient

descent: ✓
0

mi
 ✓m � ↵r✓mLTi(f✓m , µi)

10: end for

11: Update ✓m  ✓m � �r✓m⌃Ti⇠p(T )LTi(f✓0
mi

, µi)

12: Update ✓e  ✓m � �r✓e⌃Ti⇠p(T )LTi(f✓0
mi

, µi)

13: end while

We introduce Task-Informed Meta-Learning (TIML) (Algo-
rithm 1), which modulates the hidden vectors in the meta-
model based on embeddings calculated using task informa-
tion. We encode the task-specific information into a set of
vectors – two for each hidden layer to be modulated in the
meta-model, ti� and ti� . We use feature-wise linear modu-
lation (FiLM (Perez et al., 2018)) to modulate the hidden
vector outputs of the meta-model using these task encodings.
Given a hidden vector output h, we compute the Hadamard
product of ti� and hi and add ti� to calculate the modulated
vector which is passed to the next layer in the network:

hi
out = (ti� � hi) + ti� (1)

These task embeddings are updated in the outer loop during
training. This means that when the meta-model is being fine-
tuned for a specific task, the embeddings remain constant
for all datapoints in that task. We illustrate this in Figure 2.

Task encoder We use a task encoder to learn the em-
beddings. This encoder consists of linear blocks, where

Task information: Location and 
crop category encoding

Lat Long Crop category encoding USA France Kenya

less 
similarmore similar

more similar

Kenya Mali

Tseng, G., Kerner, H., Rolnick, D. Under review for ICLR 2023.
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Scalable geospatial prediction:
OpenMapFlow

Kenya Mali
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Scalable geospatial prediction:
OpenMapFlow

Kenya Mali

maize-example🌍

crop-mask-example🌍 buildings-example🌍

Zvonkov, I., Tseng, G., Nakalembe, C., Kerner, H. Under review for AAAI 2023.
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Exponential data collection:
Street2Sat

Kenya Mali

1) GoPro photos 
+ GPS coordinate

2) Crop type object 
detection

3) Location 
offset 

4) Crop type labels

Paliyam, M., Nakalembe, C., Liu, K., Nyiawung, R., Kerner, H. (2021). ICLR Tackling Climate Change with AI Workshop.
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Incorporating human expertise:
Corrective labeling

Kenya Mali
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Capacity building
boosting

Kenya Mali


