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Motivation

• Anomaly detection in “who-calls-whom” net-
work, large sets of vertices which look like
cliques are suspicious.

– Vertices correspond to humans

– Edges denote at least one phone call exchange

• Many more applications rely on dense subgraph
discovery, correlation mining, graph visualiza-
tion, mining Twitter data, bioinformatics.

Related work
• Find S ⊆ V that maximizes the degree density

ρ(S) = e(S)
|S| .

– The densest subgraph problem (DSP) is solv-
able in polynomial time.

– 2-approximation peeling algorithm which uses
linear space O(n + m) and runs in linear time
O(n+m) due to Charikar.

• Unfortunately, optimizing the DSP does not al-
ways result in finding “clique”-like sets.

– Football network (n = 115,m = 613).
The densest subgraph is the whole network with

resulting edge density fe(S) = e(S)

(|S|
2 )

= 0.094.

– (Semi)-Streaming algorithm. O(log(n)/ε)
passes over the edge stream, achieves (2 + ε)
approximation and requires Õ(n) space due to
Bahmani et al. 2012.

– Dynamic graphs. There exists (2 + ε)-
approximation algorithm, O(polylog(n)) =
Õ(1) amortized time per update, O(n + m)
space under the assumption that deletions are
random due to Epasto et al., 2015.

Main contributions
Theorem 1 (STOC’15) Let ε ∈ (0, 1), λ > 1

constant and T = dnλe.

• There is an algorithm that processes the first
T updates in the dynamic stream such that:

– It uses Õ(n) space (Space efficiency)

– It maintains a value Output(t) at each t ∈ [T ]
such that for all t ∈ [T ] whp

Opt(t)/(4 + Θ(ε)) ≤ Output(t) ≤ Opt(t).

Also, the total amount of computation per-
formed while processing the first T updates in
the dynamic stream is O(T poly log n). (Time
efficiency)

Theorem 2 (STOC’15) We can process a dy-
namic stream of updates in the graph G in Õ(n)
space, with a single pass and with high probabil-
ity return a (2 + O(ε))-approximation of d∗ =
maxS⊆V ρ(S) at the end of the stream.

Theorem 3 (KDD’15) Sample each edge e ∈
EH independently with probability p = 6

ε2
logn
D .

Then, the following statements hold simultaneously
with high probability:

– For all U ⊆ V such that ρ(U) ≥ D, ρ̃(U) ≥
(1− ε)C log n for any ε > 0.

– For all U ⊆ V such that ρ(U) < (1 − 2ε)D,
ρ̃(U) < (1− ε)C log n for any ε > 0.

Corollary 1 (KDD’15) We improve the approxi-
mation guarantee of the single pass dynamic stream-
ing algorithm to (1 + Θ(ε)).

Theorem 4 (WWW’15) Consider the follow-
ing generalization of the DSP, the k-clique DSP. The
goal is to maximize the k-clique density hk(S), k ≥ 2

as hk(S) = ck(S)
s , where ck(S) is the number of k-

cliques induced by S and s = |S|.
– For any constant K, the K-clique densest sub-

graph problem can be solved exactly in polyno-
mial time.

– Furthermore, we can 1
k -approximate it using

any K-clique counting algorithm as subroutine.

Key concept – (α, d, L)-decomp.
Definition 1 Fix any α ≥ 1, d ≥ 0, and any
positive integer L. Consider a family of subsets
Z1 ⊇ · · · ⊇ ZL. The tuple (Z1, . . . , ZL) is an
(α, d, L)-decomposition of the input graph G =
(V,E) iff Z1 = V and, for every i ∈ [L − 1], we
have Zi+1 ⊇ {v ∈ Zi : Dv(Zi) > αd} and Zi+1 ∩
{v ∈ Zi : Dv(Zi) < d} = ∅.

Two key properties of the (α, d, L)-decomposition
follow.

Theorem 5 Fix any α ≥ 1, d ≥ 0, ε ∈ (0, 1),
L← 2 + dlog(1+ε) ne. Let d∗ ← maxS⊆V ρ(S) be the
maximum density of any subgraph in G = (V,E),
and let (Z1, . . . , ZL) be an (α, d, L)-decomposition of
G = (V,E). We have: (1) If d > 2(1 + ε)d∗, then
ZL = ∅, and (2) if d < d∗/α, then ZL 6= ∅.

(Rough) Idea of how to turn the previous theorem
into an algorithm.

• Discretize the range of d∗ as dk ← (1+ε)k−1 ·mn ,
k ∈ [K] where K = O(log1+ε(n)).

• For every k ∈ [K], construct an (α, dk, L)-
decomposition (Z1(k), . . . , ZL(k)), where L =
O(log1+ε(n)).

• Let k′ ← max{k ∈ [K] : ZL(k) 6= ∅}.
Then we have the following guarantees:

1. d∗/(α(1 + ε)) ≤ dk′ ≤ 2(1 + ε) · d∗.

2. There exists an index j′ ∈ [L] such that
ρ(Zj′) ≥ dk′/(2(1 + ε)).

Sketching the idea of the streaming algorithm. The
key lemma on which we rely on is the following. Us-
ing a collection of cm(L − 1) log n/d mutually in-
dependent simple random edges, we can construct
from S an (α, d, L)-decomposition whp. The total
space used is O((n+m/d) poly log n) = Õ(n)

• “Guess” the number of edges m.

• For each guess of m, build O(log n/ε) (α, dk =
(1 + ε)k−1mn , L)-decompositions, one for each
density guess dk. Set α = 1+ε

1−ε .

• For each guess of dk maintain a sample S of
cm(L− 1) log n/dk = Õ(n) random edges.

• Perform peeling based on expected values and
find k′.

Experimental results
k-cliques
G k = 2 k = 3 k = 4

fe |S| fe |S| fe |S|
? 0.12 1 012 0.26 432 0.40 235
� 0.11 18 686 0.80 76 0.96 62
� 0.19 16 714 0.54 102 0.59 92
� 0.13 553 0.38 167 0.48 122

(p,q)-bicliques
G (p, q) = (1, 1) (p, q) = (2, 2) (p, q) = (3, 3)

fe |S| fe |S| fe |S|
? 0.001 9 177 0.06 181 0.30 40
? 0.001 6 437 0.41 18 0.43 17

• Effect of sampling on Epinions network.
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Open problems
• Can we improve the (4+ε) approximation guar-

antee? What about weighted graphs?

• Space- and time-efficient fully dynamic algo-
rithm for other graph problems, e.g., single-
source shortest paths?
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