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e Anomaly detection in “who-calls-whom” net-
work, large sets of vertices which look like
cliques are suspicious.

— Vertices correspond to humans
— Hdges denote at least one

e Many more applications rely on dense subgraph
discovery, correlation mining, graph visualiza-
tion, mining Twitter data, bioinformatics.

RELATED WORK
e Find S C V that maximizes the
p(S) = €|(SS|)-
— The densest subgraph problem (DSP) is solv-
able in polynomial time.

— 2-approximation peeling algorithm which uses
linear space O(n + m) and runs in linear time
O(n 4+ m) due to Charikar.

e Unfortunately, optimizing the DSP does not al-
ways result in finding “clique”-like sets.

— FOOTBALL NETWORK (n = 115,m = 613).
The densest subgraph is the whole network with

resulting edge density f.(S) = 7 °) — 0.094.

(2)

— (Semi)-Streaming algorithm. O(log(n)/e)
passes over the edge stream, achieves (2 + €)
approximation and requires O(n) space due to

Bahmani et al. 2012.

— Dynamic graphs. There exists (2 + ¢)-
approximation algorithm, O(polylog(n)) =
O(1) amortized time per update, O(n + m)
space under the assumption that deletions are
random due to Epasto et al., 2015.
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MAIN CONTRIBUTIONS

Theorem 1 (STOC’15) Let ¢ € (0,1), A > 1
constant and T = [n?].

o There is an algorithm that processes the first
I updates in the dynamic stream such that:

~ It uses O(n) space (Space efficiency )

~ It maintains a value OUTPUT'Y) at eacht € T
such that for all t € [T whp

OprT" /(4 +06(¢)) < OurpuT!Y < OPTW.

Also, the total amount of computation per-
formed while processing the first T updates in

the dynamic stream is O(T polylogn). (Time
efficiency )

Theorem 2 (STOC’15) We can process a dy-
namic stream of updates in the graph G in O(n)
space, with a single pass and with high probabil-
ity return a (2 + O(€))-approrimation of d* =
maxgcy p(S) at the end of the stream.

Theorem 3 (KDD’15) Sample each edge e &
Fq, independently with probability p = 662 lof_;)”.
Then, the following statements hold simultaneously

with high probability:
— For oll U C V such that p(U)
(1 —¢)C'logn for any € > 0.

— For all U C V such that p(U) < (1 — 2¢)D,
p(U) < (1 —¢€)C'logn for any e > 0.

Corollary 1 (KDD’15) We improve the approxi-
mation guarantee of the single pass dynamaic stream-

ing algorithm to (1 + ©(¢€)).

> D, p(U) >

Theorem 4 (WWW?’15) Consider the follow-

ing generalization of the DSP, the k-clique DSP. The
goal is to mazximize the k-clique density hy(S), k > 2

as hi(S) = @, where ci(S) is the number of k-
cliques induced by S and s = |S|.

— For any constant K, the K-clique densest sub-
graph problem can be solved exactly in polyno-

maal time.

— Furthermore, we can %-appmximate 1t usIng

any K-clique counting algorithm as subroutine.

KEY CONCEPT — (a, d, L)-DECOMP.

Definition 1 Fix any a« > 1, d > 0, and any

positive integer L. Consider a family of subsets
Z1 D D Zy. The tuple (Z1,...,7Z1) 18 an

(Oz,d,_L)-deCOmposition of the wnput graph G =
(V,E) iff Z1 = V and, for every i € |[L — 1], we
have Z;v1 O {v e Z;: Dy(Z;) > ad} and Z;1 1 N

{veZ;:D,(Z;) <d} =0.

Two key properties of the (o, d, L)-decomposition
follow.

Theorem 5 Fiz any a > 1, d > 0, € € (0,1),
L <2+ [log 1 nl|. Let d* <~ maxgscy p(S) be the
maximum density of any subgraph in G = (V, F),
and let (Z1,...,71) be an (a,d, L)-decomposition of
G = (V,E). We have: (1) If d > 2(1 + €)d*, then

Zr, =0, and (2) if d < d*/a, then Z, # 0.

(Rough) Idea of how to turn the previous theorem
into an algorithm.

e Discretize the range of d* as dj, < (1+¢€)*~ 1. gl
k € |[K] where K = O(log,,.(n)).

e For every k € |K]|, construct an (a,dg, L)-
decomposition (Z1(k),...,Z1(k)), where L =

O(logy 1(n)).
o Let k' < max{k € [K]: Zp(k) # 0}.

Then we have the following guarantees:
1. d*/(a(1+4¢€)) <dg <2(14¢€)-d".

2. There exists an index j° € |[L] such that

p(Zjr) = dir [(2(1 4 €)).

Sketching the idea of the streaming algorithm. The
key lemma on which we rely on is the following. Us-
ing a collection of em(L — 1)logn/d mutually in-
dependent simple random edges, we can construct
from S an («,d, L)-decomposition whp. The total
space used is O((n + m/d) polylogn) = O(n)

e “Guess” the number of edges m

e For each guess of m, build O(logn/e¢) (a,dy =
(1 4+ €)* ' L)-decompositions, one for each

density guess d. Set o = }J_re

e For each guess of di maintain a sample S of
cm(L — 1)logn/dr = O(n) random edges.

e Perform peeling based on expected values and

find k’.

EXPERIMENTAL RESULTS

k-cliques
G k=2 k=3 k=
T 1S | & ST £ |19
* 1 0.12 | 1012 | 0.26 | 432 | 0.40 | 235
@ | 0.11 | 18686 | 0.80 | 76 | 0.96 | 62
W | 019 | 16714 | 0.54 | 102 | 0.59 | 92
@ | 0.13 D03 0.38 | 167 | 0.48 | 122
(p,q)-bicliques
G| (pg=01) | (pg=(2,2) | (g =(33)
fe S fe 5 fe S
* 1 0.001 | 9177 | 0.06 181 0.30 40
* 1 0.001 | 6437 | 0.41 18 0.43 17
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OPEN PROBLEMS

e Can we improve the (44 ¢) approximation guar-
antee?” What about weighted graphs?

e Space- and time-efficient fully dynamic algo-
rithm for other graph problems, e.g., single-
source shortest paths?
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