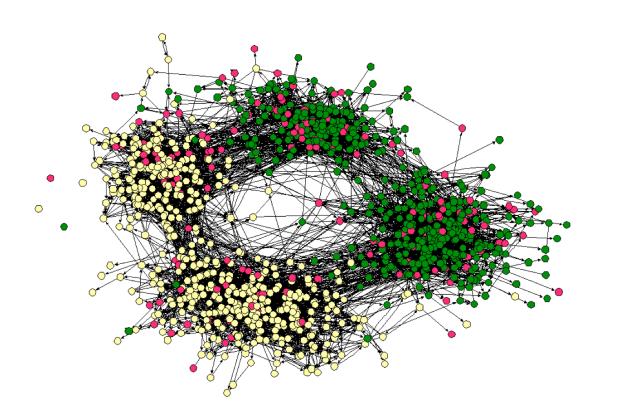


MOTIVATION



- Anomaly detection in "who-calls-whom" network, large sets of vertices which look like cliques are suspicious.
- Vertices correspond to humans
- Edges denote at least one phone call exchange
- Many more applications rely on dense subgraph discovery, correlation mining, graph visualization, mining Twitter data, bioinformatics.

Related work

- Find $S \subseteq V$ that maximizes the degree density $\rho(S) = \frac{e(S)}{|S|}.$
- The densest subgraph problem (DSP) is solvable in polynomial time.
- 2-approximation peeling algorithm which uses linear space O(n+m) and runs in linear time O(n+m) due to Charikar.
- Unfortunately, optimizing the DSP does not always result in finding "clique"-like sets.
- FOOTBALL NETWORK (n = 115, m = 613).The densest subgraph is the whole network with resulting edge density $f_e(S) = \frac{e(S)}{\binom{|S|}{2}} = 0.094.$
- $O(\log(n)/\epsilon)$ – (Semi)-Streaming algorithm. passes over the edge stream, achieves $(2 + \epsilon)$ approximation and requires O(n) space due to Bahmani et al. 2012.
- Dynamic graphs. There exists $(2 + \epsilon)$ approximation algorithm, O(polylog(n)) =O(1) amortized time per update, O(n + m)space under the assumption that deletions are random due to Epasto et al., 2015.

DENSE SUBGRAPH DISCOVERY IN LARGE GRAPHS Charalampos (Babis) E. Tsourakakis

babis@seas.harvard.edu

MAIN CONTRIBUTIONS

Theorem 1 (STOC'15) Let $\epsilon \in (0,1), \lambda > 1$ constant and $T = \lceil n^{\lambda} \rceil$.

- There is an algorithm that processes the first T updates in the dynamic stream such that:
- It uses O(n) space (Space efficiency)
- It maintains a value $OUTPUT^{(t)}$ at each $t \in [T]$ such that for all $t \in [T]$ whp

 $\operatorname{OPT}^{(t)}/(4 + \Theta(\epsilon)) \leq \operatorname{OUTPUT}^{(t)} \leq \operatorname{OPT}^{(t)}.$

the dynamic stream is $O(T \ poly \log n)$. (Time) efficiency)

Theorem 2 (STOC'15) We can process a dy*namic* stream of updates in the graph G in O(n)space, with a single pass and with high probability return a $(2 + O(\epsilon))$ -approximation of $d^* =$ $\max_{S \subset V} \rho(S)$ at the end of the stream.

Theorem 3 (KDD'15) Sample each edge $e \in$ $E_{\mathcal{H}}$ independently with probability $p = \frac{6}{\epsilon^2} \frac{\log n}{D}$. Then, the following statements hold simultaneously with high probability:

- For all $U \subseteq V$ such that $\rho(U) \geq D$, $\tilde{\rho}(U) \geq D$ $(1-\epsilon)C\log n$ for any $\epsilon > 0$.

- For all $U \subseteq V$ such that $\rho(U) < (1 - 2\epsilon)D$, $\tilde{\rho}(U) < (1-\epsilon)C\log n \text{ for any } \epsilon > 0.$

Corollary 1 (KDD'15) We improve the approximation guarantee of the single pass dynamic streaming algorithm to $(1 + \Theta(\epsilon))$.

Theorem 4 (WWW'15) Consider the following generalization of the DSP, the k-clique DSP. The goal is to maximize the k-clique density $h_k(S), k \geq 2$ as $h_k(S) = \frac{c_k(S)}{s}$, where $c_k(S)$ is the number of kcliques induced by S and s = |S|.

- For any constant K, the K-clique densest subgraph problem can be solved exactly in polynomial time.

- Furthermore, we can $\frac{1}{k}$ -approximate it using any K-clique counting algorithm as subroutine.

Key concept – (α, d, L) -decomp. Experimental results

Definition 1 Fix any $\alpha \geq 1$, $d \geq 0$, and any positive integer L. Consider a family of subsets $Z_1 \supseteq \cdots \supseteq Z_L$. The tuple (Z_1, \ldots, Z_L) is an (α, d, L) -decomposition of the input graph G =(V, E) iff $Z_1 = V$ and, for every $i \in [L - 1]$, we have $Z_{i+1} \supseteq \{v \in Z_i : D_v(Z_i) > \alpha d\}$ and $Z_{i+1} \cap$ $\{v \in Z_i : D_v(Z_i) < d\} = \emptyset.$

Two key properties of the (α, d, L) -decomposition follow.

Theorem 5 Fix any $\alpha \ge 1$, $d \ge 0$, $\epsilon \in (0,1)$, Also, the total amount of computation per-formed while processing the first T updates in $L \leftarrow 2 + \lceil \log_{(1+\epsilon)} n \rceil$. Let $d^* \leftarrow \max_{S \subseteq V} \rho(S)$ be the maximum density of any subarant in G = (V E)maximum density of any subgraph in G = (V, E), and let (Z_1, \ldots, Z_L) be an (α, d, L) -decomposition of G = (V, E). We have: (1) If $d > 2(1 + \epsilon)d^*$, then $Z_L = \emptyset$, and (2) if $d < d^*/\alpha$, then $Z_L \neq \emptyset$.

• Discretize the range of d^* as $d_k \leftarrow (1+\epsilon)^{k-1} \cdot \frac{m}{n}$, $k \in [K]$ where $K = O(\log_{1+\epsilon}(n))$.

decomposition $(Z_1(k), \ldots, Z_L(k))$, where L = $O(\log_{1+\epsilon}(n)).$

• For every $k \in [K]$, construct an (α, d_k, L) -

• Let $k' \leftarrow \max\{k \in [K] : Z_L(k) \neq \emptyset\}$.

1. $d^*/(\alpha(1+\epsilon)) \le d_{k'} \le 2(1+\epsilon) \cdot d^*$.

• "Guess" the number of edges *m*. • For each guess of m, build $O(\log n/\epsilon)$ $(\alpha, d_k =$ $(1+\epsilon)^{k-1}\frac{m}{n}, L$)-decompositions, one for each density guess d_k . Set $\alpha = \frac{1+\epsilon}{1-\epsilon}$. • For each guess of d_k maintain a sample S of $cm(L-1)\log n/d_k = O(n)$ random edges.

(Rough) Idea of how to turn the previous theorem into an algorithm.

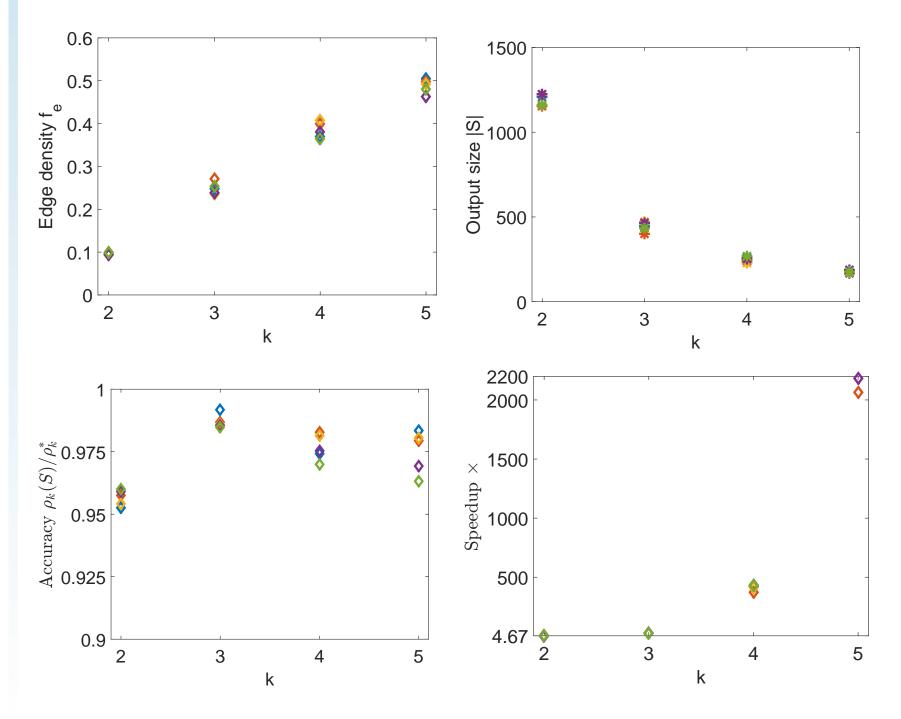
Then we have the following guarantees:

2. There exists an index $j' \in [L]$ such that $\rho(Z_{j'}) \ge d_{k'}/(2(1+\epsilon)).$

Sketching the idea of the streaming algorithm. The key lemma on which we rely on is the following. Using a collection of $cm(L-1)\log n/d$ mutually independent simple random edges, we can construct from S an (α, d, L) -decomposition whp. The total space used is $O((n + m/d) \operatorname{poly} \log n) = O(n)$

• Perform peeling based on expected values and find k'.

k-cliques G0.120.110.190.13(p,q)-bicliques (p,q)0.0010.001



REFERENCES

k = 2		k = 3		k = 4			
	S	f_e	S	f_e	S		
	1012	0.26	432	0.40	235		
	18686	0.80	76	0.96	62		
	16714	0.54	102	0.59	92		
	553	0.38	167	0.48	122		
1110S							

) = (1, 1)		(p,q) = (2,2)		(p,q) = (3,3)	
	S	f_e	S	f_e	S
1	9177	0.06	181	0.30	40
1	6437	0.41	18	0.43	17

• Effect of sampling on EPINIONS network.

OPEN PROBLEMS

• Can we improve the $(4+\epsilon)$ approximation guarantee? What about weighted graphs?

• Space- and time-efficient fully dynamic algorithm for other graph problems, e.g., singlesource shortest paths?

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, Charalampos E. Tsourakakis. Space- and Time-Efficient Algorithms for Maintaining Dense Subgraphs on One-Pass Dynamic Streams STOC 2015

[2] Charalampos E. Tsourakakis. The k-clique densest subgraph problem. WWW 2015

[3] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E. Tsourakakis, Shen Chen Xu. Scalable Large Near-Clique Detection in Large-Scale Networks via Sampling KDD 2015