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* Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by dynamical models, purely
physics-based models of atmospheric and oceanic
evolution




Dynamical Models

e |nitialized with current weather
conditions estimated from
measurements

» Simulate future weather / climate by
discretizing partial differential
equations using supercomputers

* Accuracy limited by chaotic nature:
errors in inputs rapidly amplified

* Ensembles with varying initial
conditions / model parameters often
formed to capture uncertainty

* Sometimes debiased by comparing
predictions to truth over recent years
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Source:
http://celebrating200years.noaa.gov/breakt
hroughs/climate_model/AtmosphericModel
Schematic.png



Judah Cohen

 Climatologist, director of seasonal forecasting
at Atmospheric and Environmental Research

* Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by dynamical models, purely
physics-based models of atmospheric and oceanic
evolution

* Concern: Subseasonal forecasts especially poor




FORECAST SKILL

Weather forecasts
predictability comes from initial
atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources

Climate forecasts

excellent predictability comes primarily from
sea-surface temperature data

accuracy dependent on ENSO state
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Source: https://iri.columbia.edu/news/ga-subseasonal-prediction-project/



Subseasonal Forecasting: What and Why?

* What: Predicting temperature and precipitation 2 — 6 weeks out

° Why: (White et al., 2017, Meteorological Applications) WATER
* Allocating water resources -
* Managing wildfires 3
* Preparing for weather extremes
* e.g., droughts, heavy rainfall, and flooding

* Crop planting, irrigation scheduling, and Saddle up ig
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* “The mission of the [USBR] is to manage, )
develop, and protect water and related _
resources in an environmentally and

economically sound manner in the interest of
the American public.”

* Manages water in 17 western states

* Provides 1 out of 5 Western farmers with
irrigation water for 10 million farmland acres

* Generates enough electricity to power 3.5M U.S.
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* “During the past eight years, every state in
the Western United States has experienced
drought that has affected the economy both
locally and nationally through impacts to
agricultural production, water supply, and
energy.”
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Credit: David Raff, USBR



Our SubseasonalClimateUSA Dataset

* To train and evaluate our models, we constructed a
SubseasonalClimateUSA dataset from diverse data sources

* Updated daily + accessed via subseasonal data Python package
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https://github.com/microsoft/subseasonal_data

Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

Precipitation Temperature
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* Doubles or triples the forecasting skill of US operational dynamical model (CFSv2)



Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

U.S. Precipitation, weeks 3-4 U.S. Precipitation, weeks 5-6
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CCSM4 CFSv2GEOS_V2plNESM FIMrlpl GEFS GEM ECMWF CCSM4 CFSv2 GEOS V2pl NESM ECMWF

e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts



Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

U.S. Temperature, weeks 3-4 U.S. Temperature, weeks 5-6
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e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts



ABC: An Ensemble of 3 Learning Models

* Climatology++
* Predicts historical mean or geographic median in window around target day of year
* # of training years and window size chosen adaptively via an online tuning procedure
* 250% more skillful than debiased CFSv2 for precipitation

* Dynamical++
e Learned correction for raw dynamical model forecasts

* Averages dynamical forecasts over a range of issuance dates and lead times, subtracts mean
ensemble forecast, and adds mean ground-truth over a learned window

 Ensembled lead times and issuance dates and window size chosen adaptively
* Improves deb. CFSv2 temperature and precipitation skill by 50-275%

* Persistence++

* Least squares regression per grid point to combine climatology, recent weather trends in the
form of lagged temperature or precipitation measurements, and CFSv2 ensemble forecast

* Improves deb. CFSv2 temperature and precipitation skill by 40-130%
* Also outperform 7 state-of-the-art machine learning and deep learning methods



Contiguous U.S. Performance (2010-2020)

Average % Skill

Temperature Precipitation
Group Model weeks 3-4  weeks 5-6  weeks 3-4 weeks 5-6
Baselines Debiased CFSv2 24.94 19.12 5.77 4.28
Persistence 10.64 6.22 8.31 7.41
Learning AutoKNN 12.43 8.56 6.66 5.93
Informer 0.55 0.01 6.15 5.86
LocalBoosting 14.44 12.69 10.82 9.72
MultiLLR 24.5 16.68 9.49 7.97
N—BEATS 9.21 4.16 5.48 4.46
Prophet 20.21 19.78 13.51 13.41
Salient 2.0 11.24 11.77 10.11 9.99
ABC Climatology++ 18.61 18.87 15.04 14.99
CEFSv2++ 32.38 29.19 16.34 16.09
Persistence++ 32.4 26.73 13.38 9.77
ABC 33.58 30.56 18.94 18.35

* Takeaway: ABC outperforms operational US model (CFSv2) and 7 state-of-
the-art machine learning and deep learning methods from the literature



ABC Reduces Systematic Model Bias

Temperature Temperature
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 Spatial distribution of model bias over the years 2018-2021
* CFSv2 = Climate Forecasting System v2, US operational dynamical model
* ECMWEF = European Centre for Medium-Range Weather Forecasts, leading subseasonal model



Explaining ABC Improvements

* Question: When is ABC most likely to improve upon its input model?

* Answer: Opportunistic ABC workflow
* Based on the optimal credit assignment principle of Shapley (1953)

* Measures impact of explanatory variables on individual forecasts using Cohort
Shapley (Mase et al., 2019) and overall using Shapley effects (Song et al., 2016)

* Example: Explain ABC improvements for weeks 3-4 precipitation using
* 500 hPa geopotential height (HGT)
* Captures thermal structure, synoptic circulation
Madden Julian Oscillation (MJO) phase P ="
* 30-90 day oscillation in tropical atmosphere o
10 hPa geopotential height (HGT)
e Captures polar vortex variability

Sea ice concentration (ICEC) |
* Impacts near-surface temperatures
Sea surface temperatures, multivariate ENSO index, target month, ...




Explaining ABC Improvements

U.S. Precipitation, weeks 3-4 (ABC-ECMWF vs. Debiased ECMWF)

0.004 -

0.003 -

0.002 -

Variable importance

0.001 -

Global importance of each variable in explaining skill improvement



Positive impact of HGT 500 PC1 on ABC skill improvement
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Positive impact of MJO phase on ABC skill improvement

Western Pacific
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Forecasts of Opportunity

# High-impact % Forecasts High-impact skill (%) - SBE'ZCCTII‘(’VJ::O" I:?':‘"_mpadtiattes //
variables using ABC  ABC Debiased 0.47 —~ O:)p.ortunisti CORB(:gor; I:::Ip ::t esa e //
0 or more 100.00 20.94 15.28
1 or more 95.93 20.99 14.84 =03 - ’
2 or more 80.62 22.29 13.12 S
3 or more 58.61 23.56 12.00 0.2 -—/\_
4 or more 31.82 24.72 8.18 R
5 or more 1459  26.51 8.35 T ~—— 3 e
6 or more 6.46 29.72 10.55 0.1 N -
7 or more 2.15 45.00 17.53

o 1 2 3 4 5 6 7

Minimum number of high-impact features

* Idea: Apply ABC opportunistically when multiple explanatory variables are
in high-impact state and use baseline debiased dynamical model otherwise

* Effectively defining windows of opportunity based on variables observable
at forecast issuance date



Next Steps and Open Questions

e Extend forecasting region to the entire globe
* How should skill be measured? Overall? By region? Which regions?

* Complement deterministic forecasts with probabilistic forecasts
* Forecast probability of each tercile (near normal, above normal, below normal)

e Evaluate using Ranked Probability Skill Score

A 1 _ (P1—p1)°+(Ps—ps3)”
RPSS(p,p) — ]. %_p1)2+(%_p3)2

 How well do deterministic forecasting techniques translate into this setting?

* Improved multimodel ensembling
e Standard in the field is equal weighted averaging
* But relative model performance varies over time and space
* Monteleoni et al. (2011) use online learning to learn adaptive ensembling rules
* Flaspohler et al. (2021) use optimistic online learning to deal with delayed feedback



Adaptive Bias Correction for Improved Subseasonal Forecasting
arxiv.org/abs/2209.10666

Learned Benchmarks for Subseasonal Forecasting
arxiv.org/abs/2109.10399

. Online Learning with Optimism and Delay
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Online Learning with Optimism and Delay

Yearly average regret (RMSE loss)

20 i i i i i i i
i i i i i i i
i | i i i ' '
! [ g “ ‘ ! ' N
o i | ST T D | id
| i ! fo. ide r o
t .= ] 2 ’T\t Sfa g [ed 'fv\
I A B |5 1 s
0 7 i | S 1 i1 I
il f Ty i : i i I' I
VS o
L i i B i | | | F
| | | — 1 1
2 : : AdaHedgeD (RMSE: 21.726) —— DORM-+ (RMSE: 21.675)
2] i [ el DORM (RMSE: 21.731)
i i i 1 1 1 1 1 1 1

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Table 1: Average RMSE of 2011-2020 semimonthly forecasts: The online learners compare favorably
with the best input models and learn to downweight lower-performing candidates, like the worst models.

ADAHEDGED DORM DORM-+ MODEL1 MoDEL2 MOoODEL3 MOoODEL4 MODELS MODEL6

P3-4 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.344
P5-6 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257
T3-4 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508
T5-6 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2 2.569
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