

What happened with the policy: $y_i(1)$

Potential outcome of what would've happened without the policy: $y_i(0)$

The pixel-level treatment effect can be expressed as:

$$E_i = y_i(1) - y_i(0)$$

We want to measure the **Average Treatment Effect on** the Treated (ATT):

$$ATT = \frac{1}{n_{i:D_i=1}} \sum_{i:D_i=1}^{N} y_i(1) - y_i(0)$$

Methods for estimating counterfactual

- Experiments
 Jayachandran et al., 2017
- Difference in differences / event study Alix-Garcia and Gibbs, 2017
- Propensity score matching Heilmayr and Lambin, 2016
- Instrumental variables
 MacDonald and Mordecai, 2019
- Synthetic control West et al., 2020
- Regression discontinuity design Jordán and Heilmayr, 2021
- Double machine learning Sanford, 2021

Reviews Blackman, 2013; Van Butsic et al., 2017

Enthusiasm for remote sensing + econometrics

~1000 papers using econometric methods[†] that cite Hansen et al., 2013

† Google scholar search for (econometric* or "causal inference" or "impact evaluation" or "fixed effects" or "regression discontinuity" or "instrumental variable")

Causal inference + remote sensing has facilitated new insights into:

- Protected areas
 Andam et al., 2008; Herrera, Pfaff and Robalino, 2019
- Payments for ecosystem services Ramirez-Reyes et al., 2018; Heilmayr, Echeverría and Lambin, 2020
- Indigenous tenure reform Baragwanath and Bayi, 2020; Jordán and Heilmayr, 2021
- Zero-deforestation commitments Alix-Garcia and Gibbs, 2017; Heilmayr, Rausch, Munger and Gibbs, 2020

Appeal of remotely sensed data for causal inference

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series

However, remotely sensed data are different...

Question: Does applying standard econometric methods to remotely sensed data generate accurate estimates of the impacts of conservation policies?

Answer: Frequently not. Many previous estimates may be biased. However, careful model design can solve this problem.

Roadmap

- Foundation
 - Remotely sensed data on deforestation
 - Panel, econometric methods for impact evaluation
- Testing alternate models
- Insights
 - A big problem
 - A simple solution
 - A better solution

Initial forested landscape in 2000

- Previously deforested
- Not deforested

$$y_{i,2001} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

$$y_{i,2002} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

$$y_{i,2003} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

$$y_{i,2004} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

$$y_{i,2005} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series
- Binary
- Irreversible

Difference in differences regression:

$$y_{i,t} = \beta_{DID} \times D_i \times T_t + \gamma D_i + \eta T_t + \mu_{i,t}$$
 $D_i = \text{Points inside Amazon Biome}$
 $T_t = \text{Years after adoption (2006)}$
 $\hat{\beta}_{DID}$ is an estimate of ATT

Two-way, fixed effects regression (Generalized difference in differences):

$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$

Which model is right?

We generate a landscape of *i* pixels

Pixels can be grouped into different scales of geographic or management units (e.g. grid cells, counties or properties)

We observe the landscape across t time periods

Some units are randomly assigned to a policy treatment in second period $(D_{i,t=2} = 1)$

$$t = 2$$
 $D_{101,2} = 1$

Deforestation $(y_{i,t})$ is simulated as a binary irreversible outcome

$$y_{i,t} = \begin{cases} 0 \text{ if not deforested} \\ 1 \text{ if deforested} \\ NA \text{ if previously deforested} \end{cases}$$

$$t = 2$$
 $y_{60,2} = 1$

What models yield good estimates of ATT?

Scale of fixed effects or units of observatio

- Pixel (e.g. Alix-Garcia et al., 2018)
- Treatment (e.g. Arriagada et al., 2012)
- County (e.g. Blackman, 2015)
- Grid cell (e.g. BenYishay et al., 2017)
- Property (e.g. Heilmayr and Lambin, 2016)

Functional form

Calculation of deforestation rate

Calculation of standard errors

Difference in differences regression:

$$y_{i,t} = \beta_{DID} \times D_i \times T_t + \gamma D_i + \eta T_t + \mu_{i,t}$$

Two-way, fixed effects regression (Generalized difference in differences):

$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$

Which model is right?

Difference in differences or two-way fixed effects?

TWFE yields biased estimate of ATT

Two-way fixed effects regression:

$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$

$$\hat{\beta}_{TWFE} = \underbrace{\frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(1) - y_{i,2}(0)}_{n_{i:D_i=1}} + \left(\frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(0) - \frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(0)\right)$$

ATT

Baseline difference in deforestation rate

Varying scale of fixed effects

Treatment (i.e. DiD)

Varying scale of fixed effects

Counties

Varying scale of fixed effects

Grid cell

Varying scale of fixed effects

Property

Increasing property-scale disturbances

Increasing property-scale disturbances within difference in differences model

Varying units of observation with high property-level disturbances ($\sigma_p = 0.3$)

Increasing property-scale disturbances within difference in differences model

Varying units of observation with high property-level disturbances ($\sigma_p=0.3$)

Increasing property-scale disturbances within difference in differences model

Varying units of observation with high property-level disturbances ($\sigma_p=0.3$)

Increasing property-scale disturbances within difference in differences model

Varying units of observation with high property-level disturbances ($\sigma_p = 0.3$)

Opportunities and challenges

- Interdisciplinary collaboration opens doors to new data and methods
- Causal inference + remote sensing has yielded critical insights to guide more effective ecosystem management
- But, requires caution standard tools from one field may need modification for others
- What opportunities, and challenges, emerge as we begin to quantify impact using novel biodiversity data?

Full paper covers...

- Selection bias due to attrition
- Survival model designs
- Impact of different measures of deforestation
- Staggered adoption
- Heterogeneous treatment effects

- baseline₀: Pre-treatment deforestation rate outside of treatment area
- baseline₁: Pre-treatment deforestation rate inside of treated area

- baseline₀: Pre-treatment deforestation rate outside of treatment area
- baseline₁: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods

- baseline₀: Pre-treatment deforestation rate outside of treatment area
- baseline₁: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods
- *ATT*: The impact that the policy has on the deforestation rate inside treatment area

- baseline₀: Pre-treatment deforestation rate outside of treatment area
- baseline₁: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods
- *ATT*: The impact that the policy has on the deforestation rate inside treatment area
- α_i , ρ_v , $\mu_{i,t}$: Normally distributed, random variables representing pixel, property and pixel-by-year random disturbances

Evaluation of candidate models

Evaluation of candidate models – Bias

Evaluation of candidate models – Coverage

