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Impacts of the Amazon Soy Moratorium
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Impacts of the Amazon Soy Moratorium
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Impacts of the Amazon Soy Moratorium
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Methods for estimating counterfactual

* Experiments Deforestation rate( £ )

year
Jayachandran et al., 2017 .

* Difference in differences / event study
Alix-Garcia and Gibbs, 2017

* Propensity score matching
Heilmayr and Lambin, 2016 2

* Instrumental variables
MacDonald and Mordecai, 2019

Counterfactual ,
Amazon biome ¢

* Synthetic control 1
West et al., 2020

* Regression discontinuity design 2002 2006 2010 2014

Jordan and Heilmayr, 2021 Year

* Double machine learning Reviews
Sanford, 2021 Blackman, 2013; Van Butsic et al., 2017



Enthusiasm for remote sensing + econometrics

~1000 papers using econometric
methods™that cite Hansen et al., 2013

200 A

—
(6))
o

Number of papers
g 3

o

2014 2016 2018 2020
Year

T Google scholar search for (econometric* or "causal
inference" or "impact evaluation" or "fixed effects" or
"regression discontinuity" or "instrumental variable")

Causal inference + remote sensing
has facilitated new insights into:

* Protected areas

Andam et al., 2008; Herrera, Pfaff and
Robalino, 2019

* Payments for ecosystem services
Ramirez-Reyes et al., 2018; Heilmayr,
Echeverria and Lambin, 2020

* Indigenous tenure reform

Baragwanath and Bayi, 2020; Jordan and
Heilmayr, 2021

e Zero-deforestation commitments

Alix-Garcia and Gibbs, 2017; Heilmayr, Rausch,
Munger and Gibbs, 2020
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However, remotely sensed data are different...

Question: Does applying
standard econometric methods
to remotely sensed data generate
accurate estimates of the impacts
of conservation policies?

Answer: Frequently not. Many
previous estimates may be

Semassamm::cmsa"mms® Diased. However, careful model

L]
: . _
EEEEEEEE============== design can solve this problem.
H

Garcia and Heilmayr, 2022



Roadmap

* Foundation

* Remotely sensed data on deforestation

* Panel, econometric methods for impact
evaluation

* Testing alternate models

* Insights
* A big problem
* Asimple solution
* A better solution



Data setting

Remotely sensed maps of deforestation
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Previously deforested

Initial forested landscape in 2000
®  Not deforested
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Data setting

"SEEEEEEEmN Deforestation in 2001

(O if persistent forest

Yi2001 = { [l 1 if deforested
_[] NA if previously deforested




NA if previously deforested

(O if persistent forest
1 [ 1 if deforested
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NA if previously deforested

(O if persistent forest

Yi2003 = { [l 1 if deforested

\

Deforestation in 2003
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Data setting

EEE NN EEEN Deforestation in 2004
HN BN SEEEN

.
(O if persistent forest
Yi2004 = { [l 1 if deforested

_[] NA if previously deforested




NA if previously deforested

(O if persistent forest
1 [ 1 if deforested

\

Deforestation in 2005
Yi,2005
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Econometric methods

Panel approaches to impact evaluation



Impacts of the Amazon Soy Moratorium
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Impacts of the Amazon Soy Moratorium
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Impacts of the Amazon Soy Moratorium
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Monte Carlo simulations

Testing alternate models for impact evaluation.



Simulating forested landscapes

We generate a landscape of i pixels

Garcia and Heilmayr, 2022



Simulating forested landscapes

Grid cells

Pixels can be grouped into different scales
of geographic or management units (e.g.
grid cells, counties or properties)
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Simulating forested landscapes

We observe the landscape across t
time periods




Simulating forested landscapes

Some units are randomly assigned to a
policy treatment in second period

(Dip=z = 1)




Simulating forested landscapes
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What models yield good estimates of ATT?

Scale of fixed effects or units of observatio

* Pixel (e.g. Alix-Garcia et al., 2018)

* Treatment (e.qg. Arriagada et al., 2012)

* County (e.g. Blackman, 2015)

* Grid cell (e.g. BenYishay et al., 2017)

* Property (e.g. Heilmayr and Lambin, 2016)

Functional form
Calculation of deforestation rate
Calculation of standard errors

Garcia and Heilmayr, 2022



Insight 1: A big problem

Pixel-level, two-way fixed effects model
does not estimate the ATT



Difference in differences or two-way fixed effects?
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Difference in differences or two-way fixed effects?

Frequency

: Treated baseline = 0.03
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Garcia and Heilmayr, 2022



Difference in differences or two-way fixed effects?
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Difference in differences or two-way fixed effects?
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Difference in differences or two-way fixed effects?
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Difference in differences or two-way fixed effects?
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TWFE yields biased estimate of ATT

~ A

Two-way fixed effects regression:

Vit = PrwreXDiXTe +yi + 0 + Ui ¢

- 1 1 N 1 N
Brwre = " Ii\;,Di=1 J’i,z(l) - Yi,z(o) + ( i;D;=1 Yi?2 (O) _ Zi;Dizl Yi2 (O))
L:Di=1 ni:Di=1 ni:Dl‘=1
ATT Baseline difference in

deforestation rate

Garcia and Heilmayr, 2022



Insight 2: A simple solution
Aggregation can yield unbiased estimates of the ATT.



Aggregation as a solution

Varying scale of fixed effects Treatment (i.e. DID)
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Aggregation as a solution

Varying scale of fixed effects Counties
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Aggregation as a solution

Varying scale of fixed effects Grid cell
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Aggregation as a solution

Varying scale of fixed effects

Coverag
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Aggregation as a solution

Varying scale of fixed effects Varying scale of units of observation
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Insight 3: A better solution

Matching model structure to scale of real-world
decisionmaking yields a better model.



Effect of property-level disturbances

Increasing property-scale disturbances

Bias
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Effect of property-level disturbances

Increasing property-scale disturbances Varying units of observation with high
within difference in differences model property-level disturbances (o, = 0.3)
Bias
g !I % . .
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Effect of property-level disturbances

Increasing property-scale disturbances Varying units of observation with high
within difference in differences model property-level disturbances (o, = 0.3)
Bias
g !I % . .
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Effect of property-level disturbances

Increasing property-scale disturbances
within difference in differences model

Varying units of observation with high
property-level disturbances (o, = 0.3)

¥
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Effect of property-level disturbances

Increasing property-scale disturbances
within difference in differences model

Bias

0.00 0.01

-0.01
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Varying units of observation with high
property-level disturbances (o, = 0.3)
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Opportunities and challenges

Treated baseline = 0.04

S e = * Interdisciplinary collaboration opens
Trend = -0.005 doors to new data and methods

 Causal inference + remote sensing
has yielded critical insights to guide
more effective ecosystem
management

Frequency

* But, requires caution — standard tools
from one field may need modification
for others

* What opportunities, and challenges,
emerge as we begin to quantify
impact using novel biodiversity data?

Garcia and Heilmayr, 2022



Full paper covers...

e Selection bias due to attrition
* Survival model designs

* Impact of different measures of
deforestation

* Staggered adoption
* Heterogeneous treatment effects
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Simulating forested landscapes

Deforestation (y; ;) is simulated as
a function of seven parameters:

* baseliney: Pre-treatment deforestation
rate outside of treatment area

* baseline;: Pre-treatment deforestation
rate inside of treated area

Deforestation rate (

6

year Policy
: adopted
baseline; I
[
|
I
I
I
I
baseline, :
I
I
|
[
1 2
Year

Garcia and Heilmayr, 2022



Simulating forested landscapes

Deforestation (y; ;) is simulated as

. %
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Simulating forested landscapes

Deforestation (y; ;) is simulated as

. %
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INSI r 4

rate inside of treated area : baseline, + trend + ATT
e trend: Common trend in deforestation l

rates across the two time periods baseline, :
* ATT:The impact that the policy has on : | baseline, + trend

the deforestation rate inside treatment :

area |

0] 1 2

Year

Garcia and Heilmayr, 2022



Simulating forested landscapes

Deforestation (y; ;) is simulated as
a function of seven parameters:

baseline,: Pre-treatment deforestation
rate outside of treatment area

baseline;: Pre-treatment deforestation
rate inside of treated area

trend: Common trend in deforestation
rates across the two time periods

ATT:The impact that the policy has on
the deforestation rate inside treatment
area

@, Py, Ui ¢ Normally distributed, random
variables representing pixel, property
and pixel-by-year random disturbances

1)
Deforestation rate( % )
year

6

baseline

Policy
adopted

baseline; + trend

baseline; + trend + ATT
e

—_—

Year
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Evaluation of candidate models
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Evaluation of candidate models — Bias

Model 1 bias = —0.01 Model 2 bias = 0.5

Mean estimated TT 1 Mean estimated
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Evaluation of candidate models — Coverage

Mean estimated 11 1 Mean estimated
ATT from model 1 : : VRS 0 : ATT from model 2
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