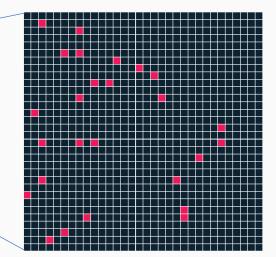
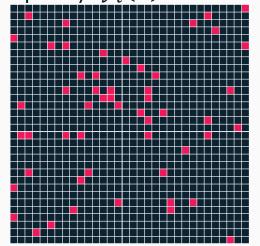


What happened with the policy:  $y_i(1)$ 



Potential outcome of what would've happened without the policy:  $y_i(0)$ 



The pixel-level treatment effect can be expressed as:

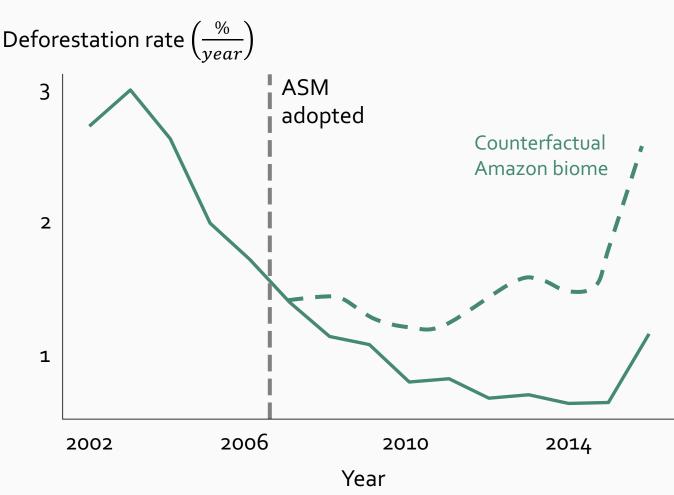
$$E_i = y_i(1) - y_i(0)$$

We want to measure the **Average Treatment Effect on** the Treated (ATT):

$$ATT = \frac{1}{n_{i:D_i=1}} \sum_{i:D_i=1}^{N} y_i(1) - y_i(0)$$

## Methods for estimating counterfactual

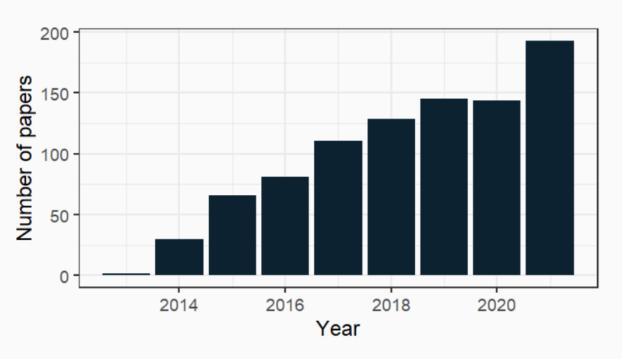
- Experiments
  Jayachandran et al., 2017
- Difference in differences / event study Alix-Garcia and Gibbs, 2017
- Propensity score matching Heilmayr and Lambin, 2016
- Instrumental variables
   MacDonald and Mordecai, 2019
- Synthetic control West et al., 2020
- Regression discontinuity design Jordán and Heilmayr, 2021
- Double machine learning Sanford, 2021



Reviews Blackman, 2013; Van Butsic et al., 2017

### Enthusiasm for remote sensing + econometrics

~1000 papers using econometric methods<sup>†</sup> that cite Hansen et al., 2013

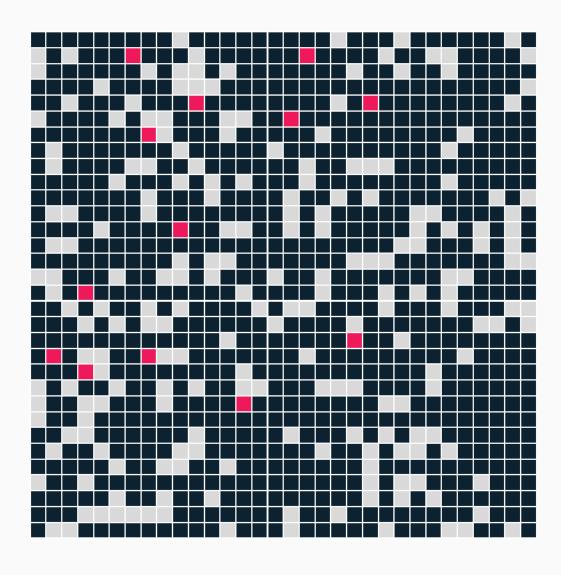


† Google scholar search for (econometric\* or "causal inference" or "impact evaluation" or "fixed effects" or "regression discontinuity" or "instrumental variable")

# Causal inference + remote sensing has facilitated new insights into:

- Protected areas
   Andam et al., 2008; Herrera, Pfaff and Robalino, 2019
- Payments for ecosystem services Ramirez-Reyes et al., 2018; Heilmayr, Echeverría and Lambin, 2020
- Indigenous tenure reform Baragwanath and Bayi, 2020; Jordán and Heilmayr, 2021
- Zero-deforestation commitments Alix-Garcia and Gibbs, 2017; Heilmayr, Rausch, Munger and Gibbs, 2020

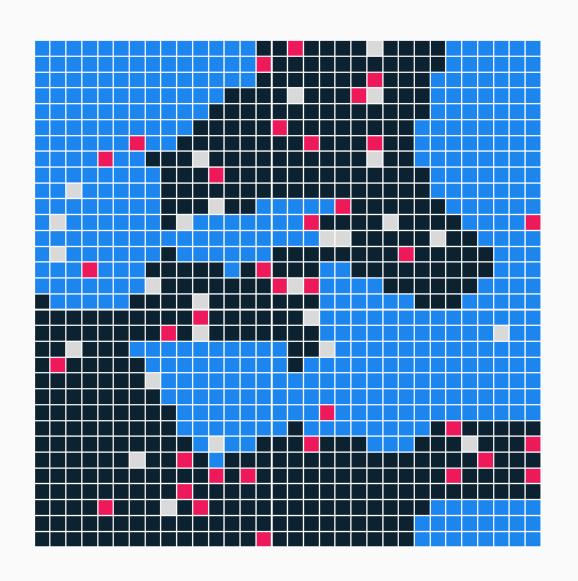
#### Appeal of remotely sensed data for causal inference



#### Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series

### However, remotely sensed data are different...



Question: Does applying standard econometric methods to remotely sensed data generate accurate estimates of the impacts of conservation policies?

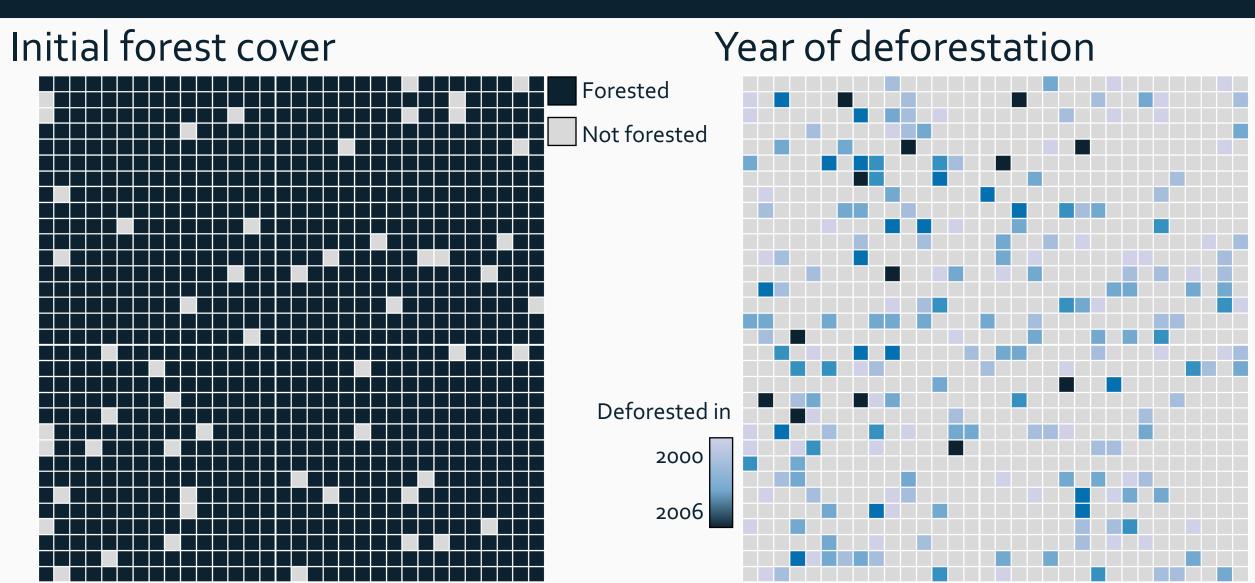
Answer: Frequently not. Many previous estimates may be biased. However, careful model design can solve this problem.

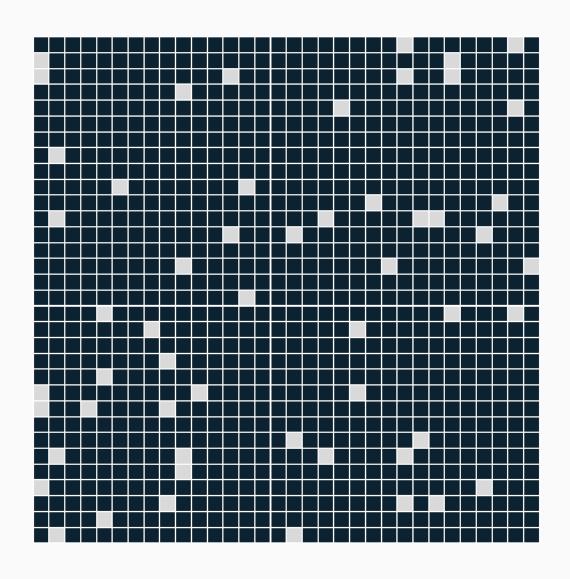
# Roadmap

- Foundation
  - Remotely sensed data on deforestation
  - Panel, econometric methods for impact evaluation
- Testing alternate models
- Insights
  - A big problem
  - A simple solution
  - A better solution



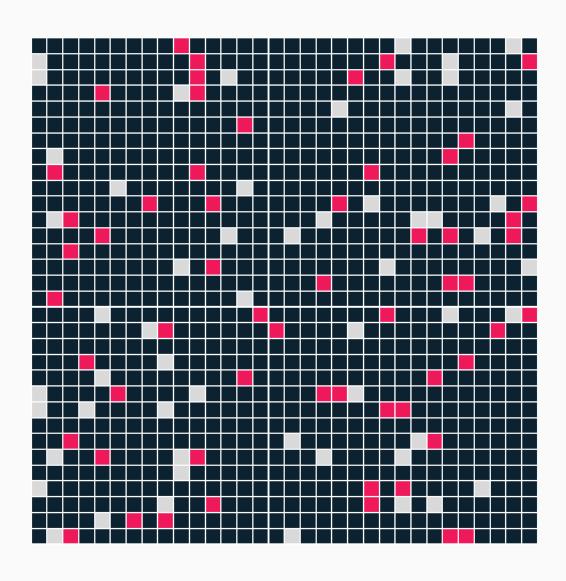




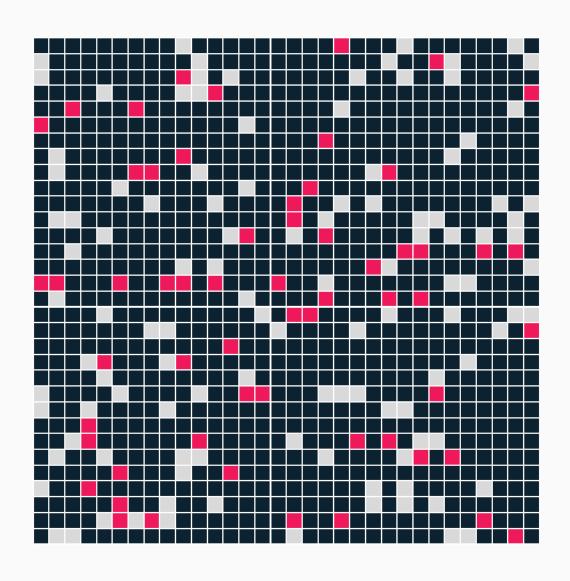


#### Initial forested landscape in 2000

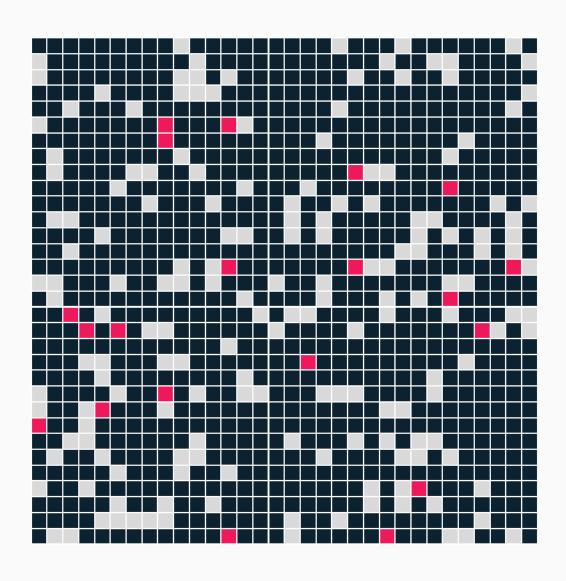
- Previously deforested
- Not deforested



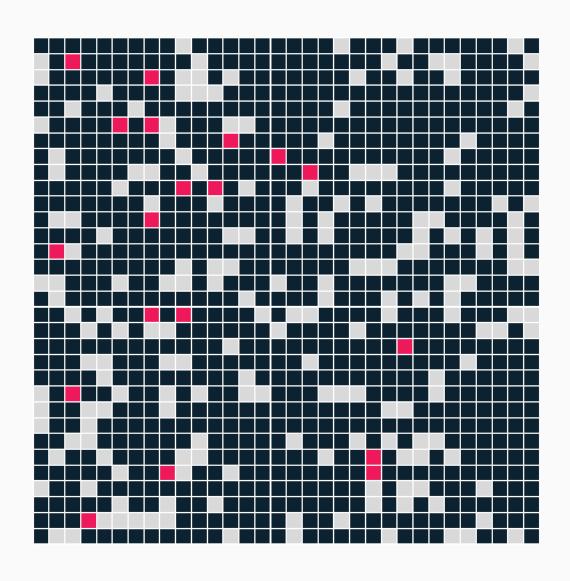
$$y_{i,2001} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$



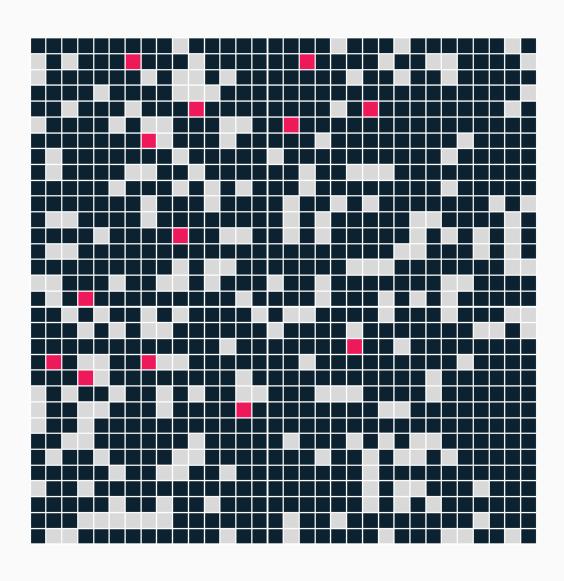
$$y_{i,2002} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$



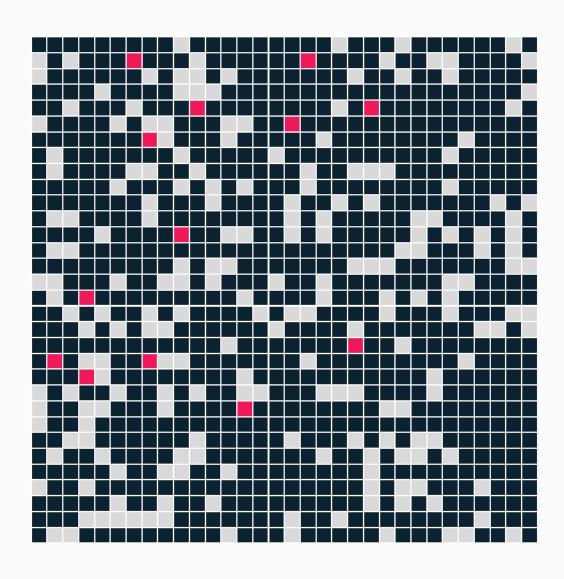
$$y_{i,2003} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$



$$y_{i,2004} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$



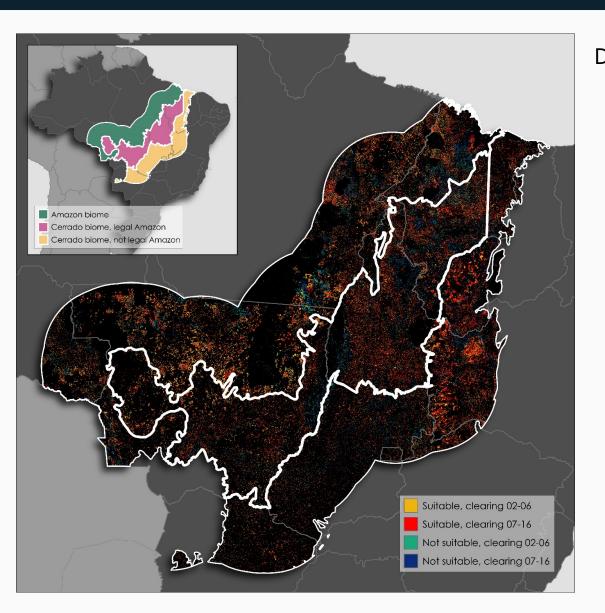
$$y_{i,2005} = \begin{cases} \blacksquare \ 0 \text{ if persistent forest} \\ \blacksquare \ 1 \text{ if deforested} \\ \blacksquare \ NA \text{ if previously deforested} \end{cases}$$

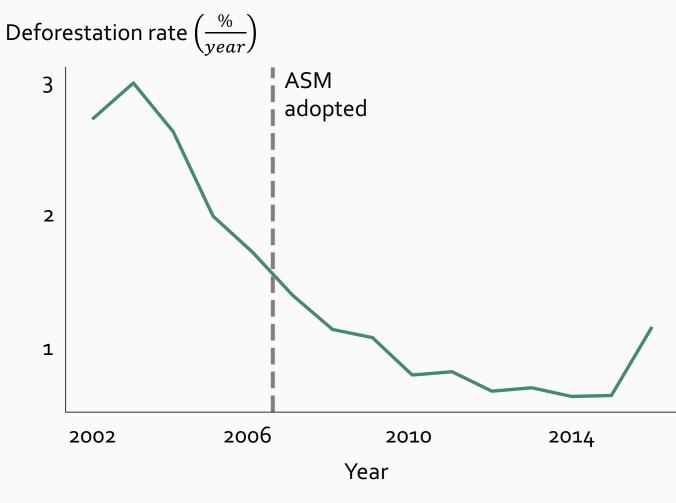


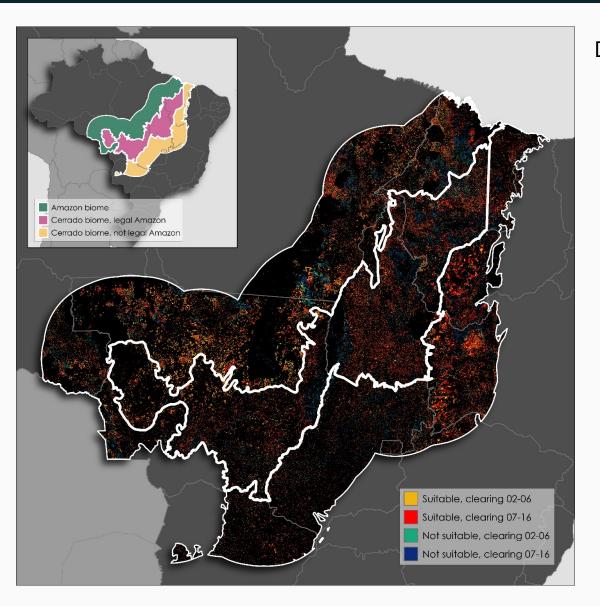
#### Data characteristics

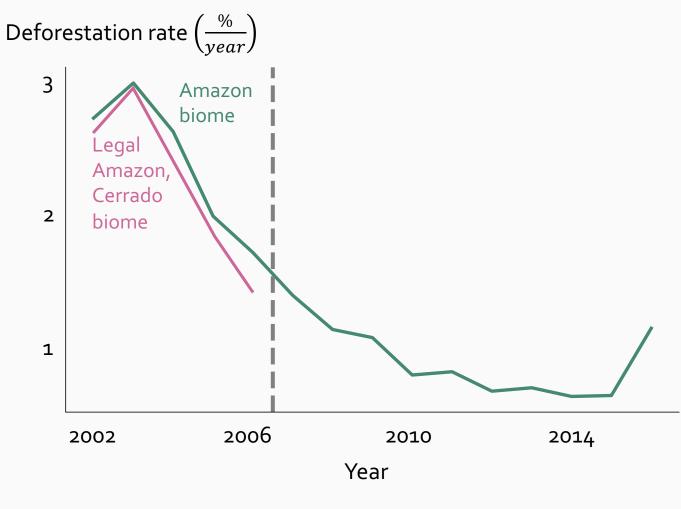
- Wall to wall data
- Fine spatial scales
- Relatively long time series
- Binary
- Irreversible

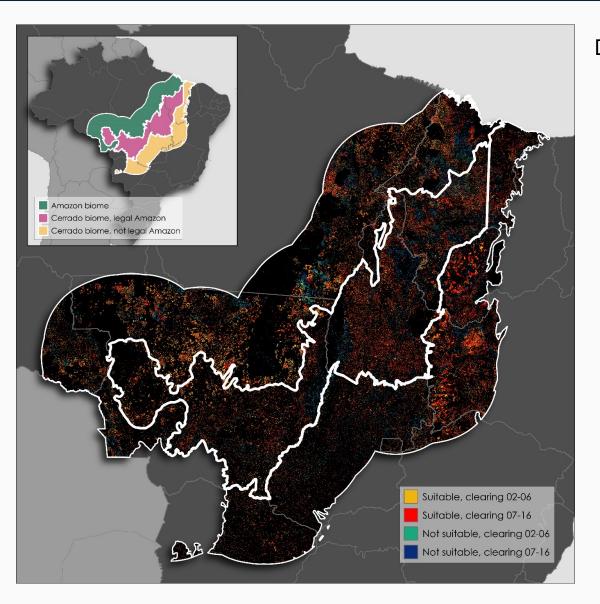


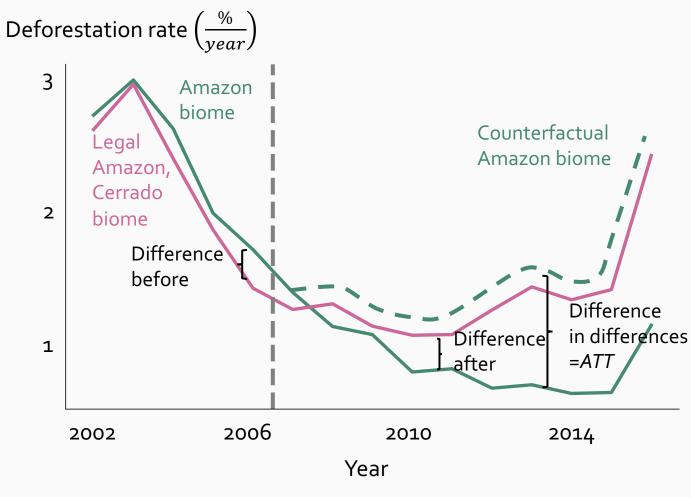










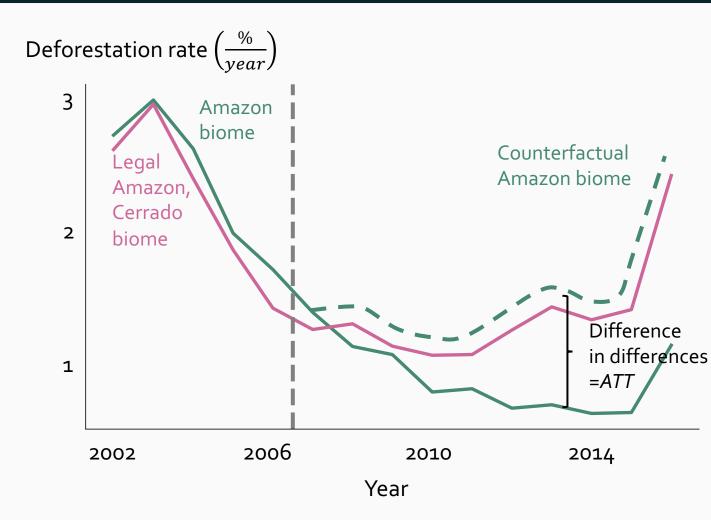


#### Difference in differences regression:

$$y_{i,t} = \beta_{DID} \times D_i \times T_t + \gamma D_i + \eta T_t + \mu_{i,t}$$
 $D_i = \text{Points inside Amazon Biome}$ 
 $T_t = \text{Years after adoption (2006)}$ 
 $\hat{\beta}_{DID}$  is an estimate of  $ATT$ 

# Two-way, fixed effects regression (Generalized difference in differences):

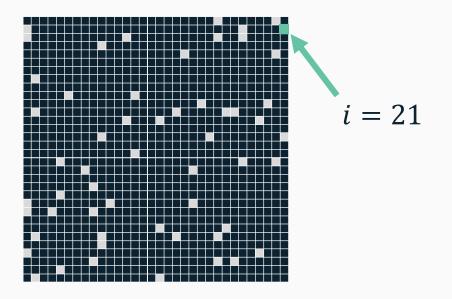
$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$



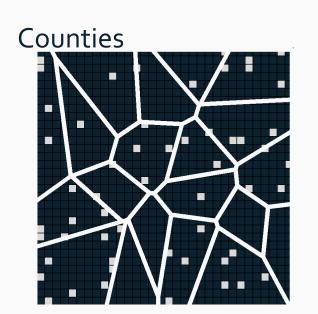
#### Which model is right?



We generate a landscape of *i* pixels

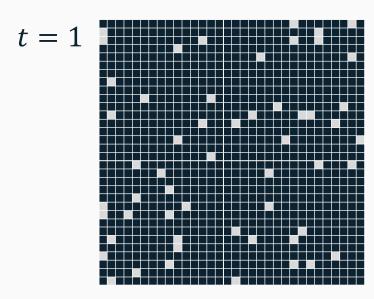


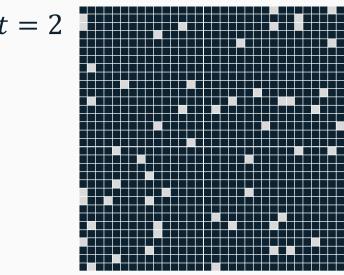
Pixels can be grouped into different scales of geographic or management units (e.g. grid cells, counties or properties)



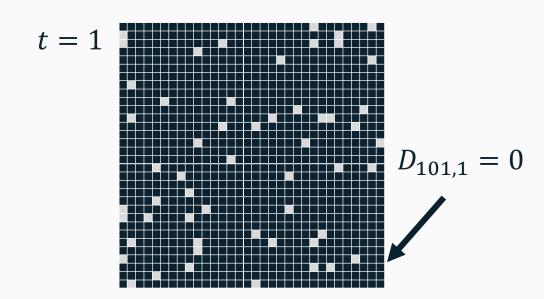


We observe the landscape across t time periods





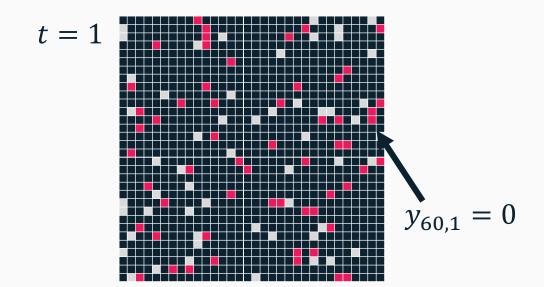
Some units are randomly assigned to a policy treatment in second period  $(D_{i,t=2} = 1)$ 



$$t = 2$$
 $D_{101,2} = 1$ 

Deforestation  $(y_{i,t})$  is simulated as a binary irreversible outcome

$$y_{i,t} = \begin{cases} 0 \text{ if not deforested} \\ 1 \text{ if deforested} \\ NA \text{ if previously deforested} \end{cases}$$



$$t = 2$$
 $y_{60,2} = 1$ 

## What models yield good estimates of ATT?

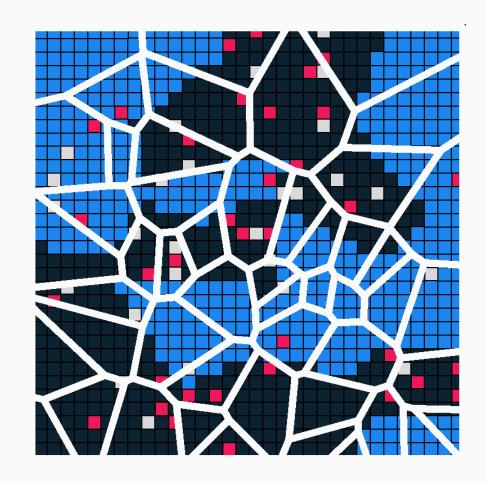
#### Scale of fixed effects or units of observatio

- Pixel (e.g. Alix-Garcia et al., 2018)
- Treatment (e.g. Arriagada et al., 2012)
- County (e.g. Blackman, 2015)
- Grid cell (e.g. BenYishay et al., 2017)
- Property (e.g. Heilmayr and Lambin, 2016)

#### Functional form

Calculation of deforestation rate

Calculation of standard errors





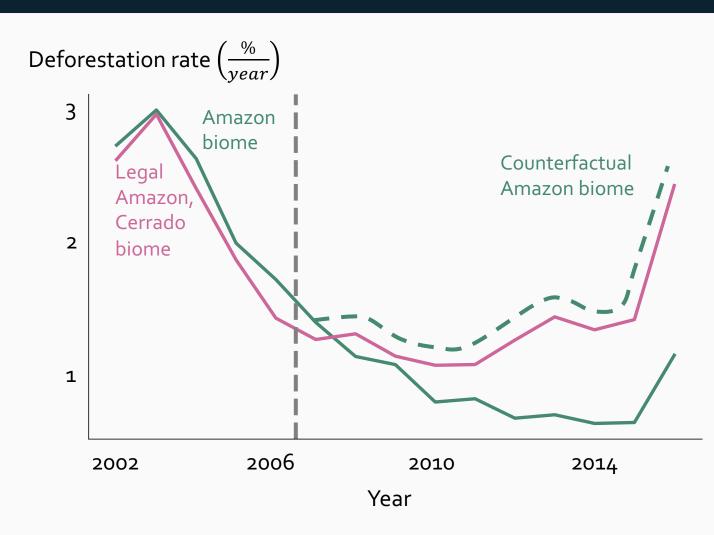
#### Difference in differences regression:

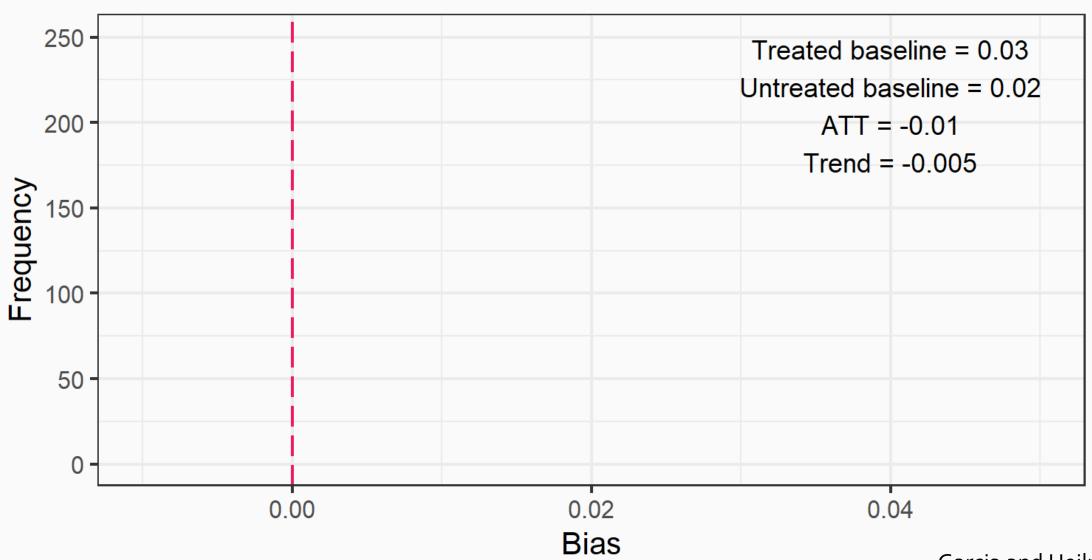
$$y_{i,t} = \beta_{DID} \times D_i \times T_t + \gamma D_i + \eta T_t + \mu_{i,t}$$

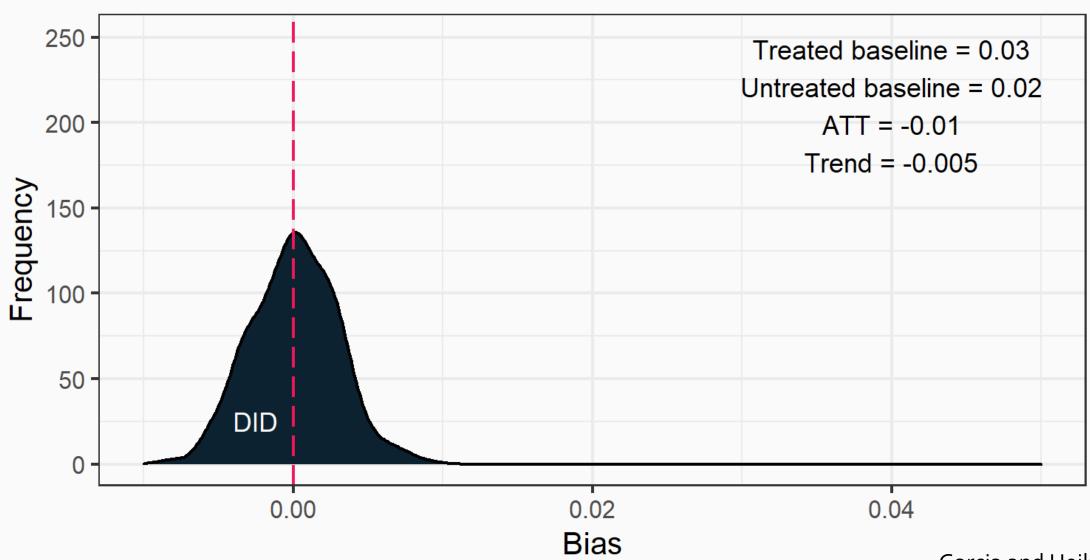
Two-way, fixed effects regression (Generalized difference in differences):

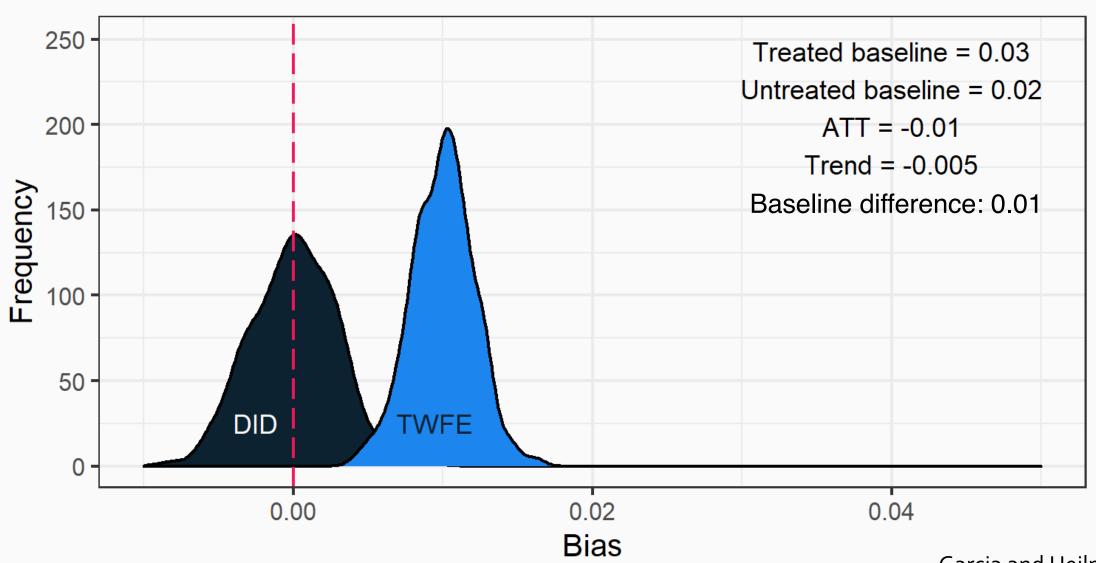
$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$

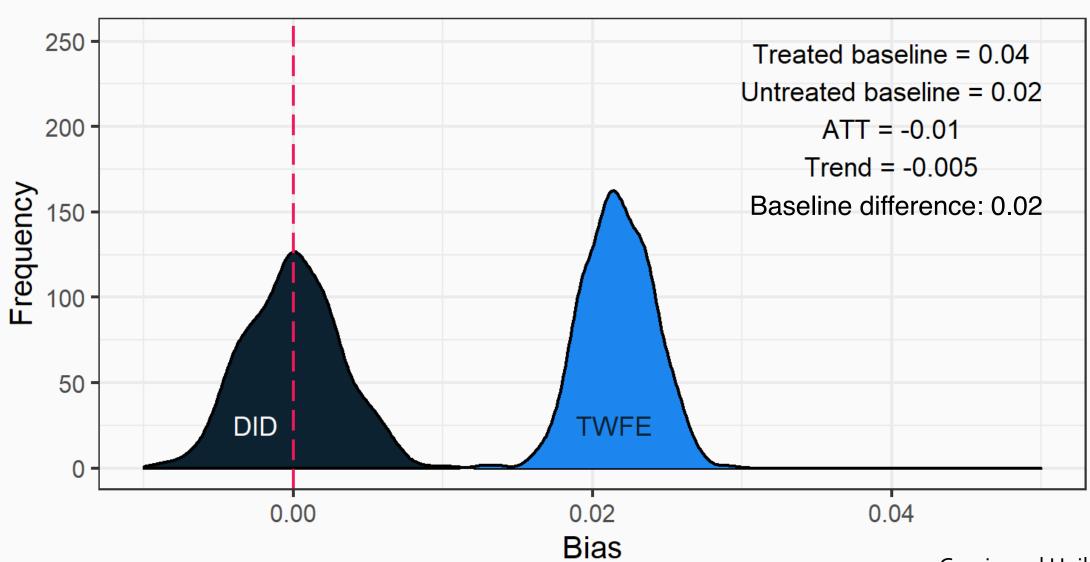
Which model is right?



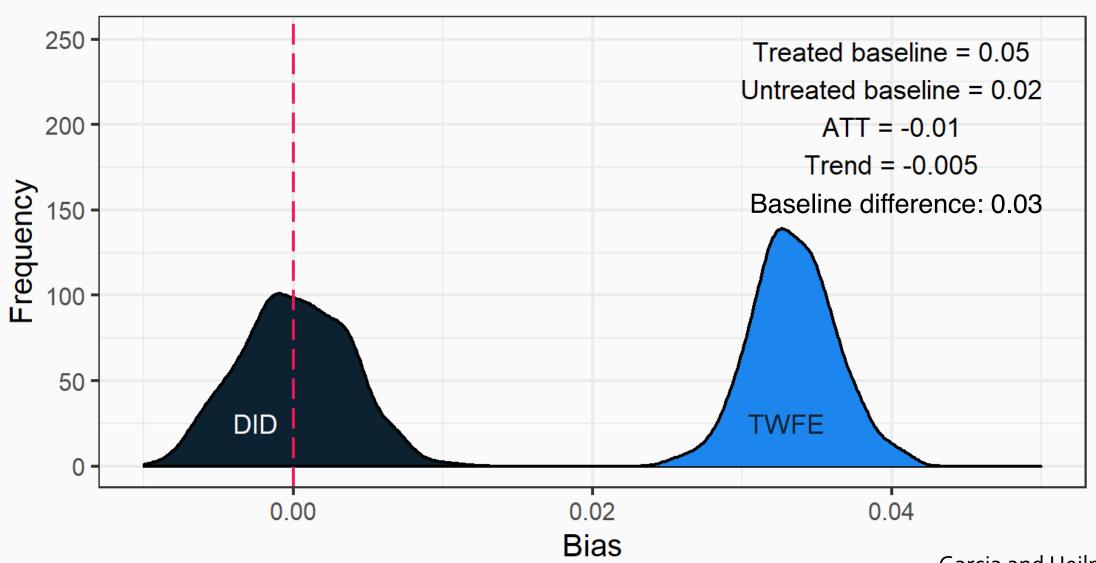








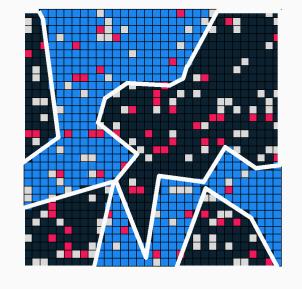
#### Difference in differences or two-way fixed effects?



### TWFE yields biased estimate of ATT

#### Two-way fixed effects regression:

$$y_{i,t} = \beta_{TWFE} \times D_i \times T_t + \gamma_i + \eta_t + \mu_{i,t}$$



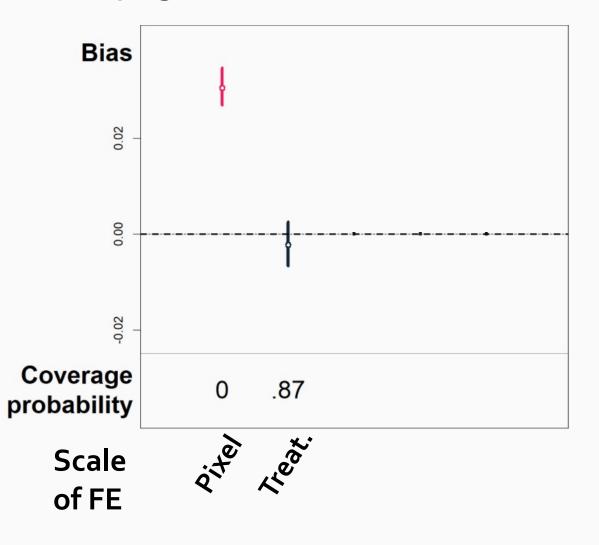
$$\hat{\beta}_{TWFE} = \underbrace{\frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(1) - y_{i,2}(0)}_{n_{i:D_i=1}} + \left(\frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(0) - \frac{1}{n_{i:D_i=1}} \sum_{i;D_i=1}^{N} y_{i,2}(0)\right)$$

**ATT** 

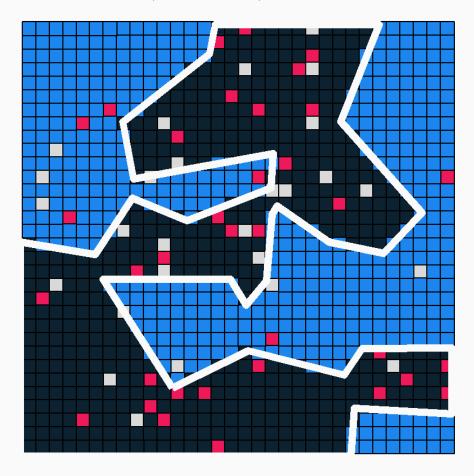
Baseline difference in deforestation rate



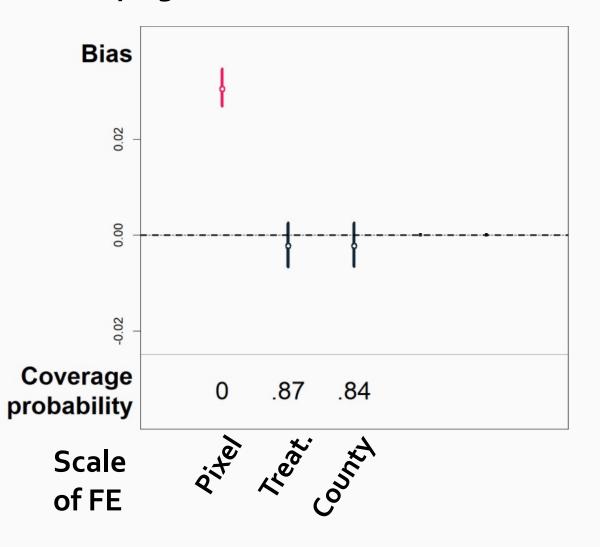
#### Varying scale of fixed effects



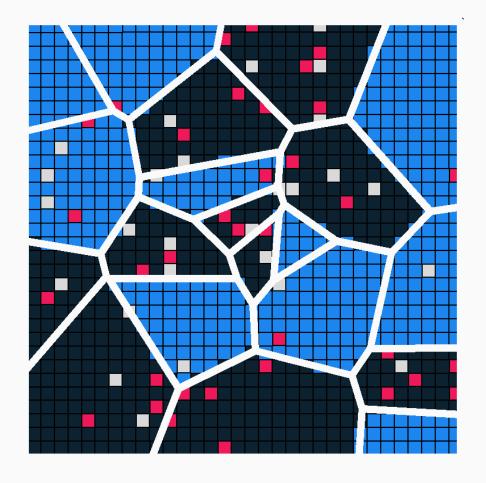
#### Treatment (i.e. DiD)



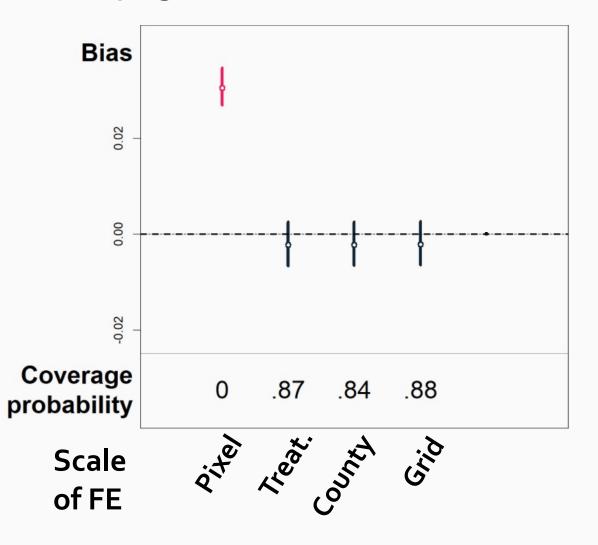
#### Varying scale of fixed effects



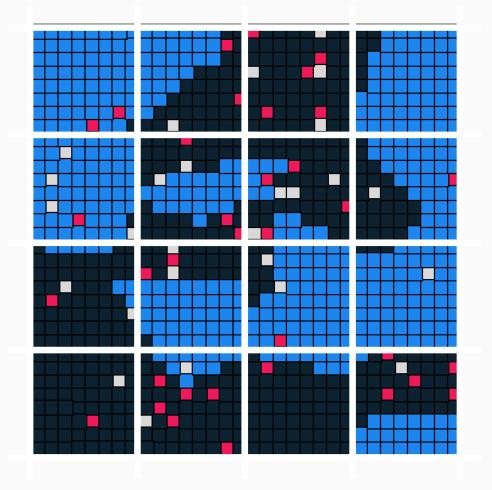
#### **Counties**



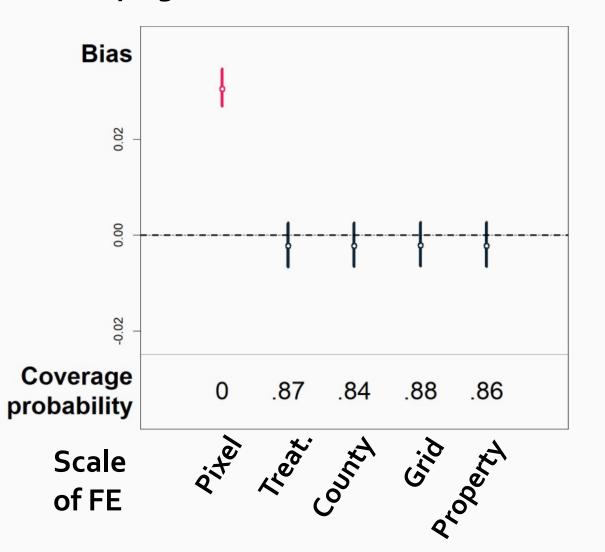
#### Varying scale of fixed effects



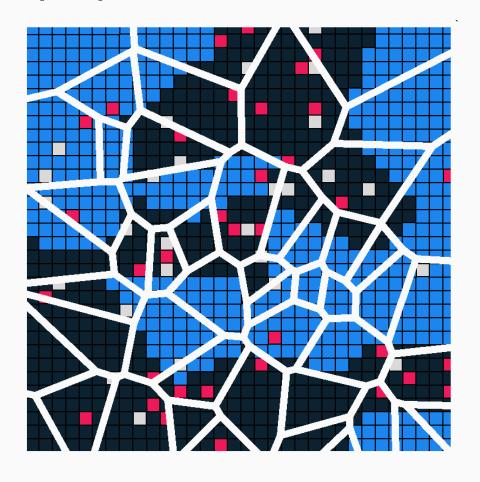
#### **Grid cell**

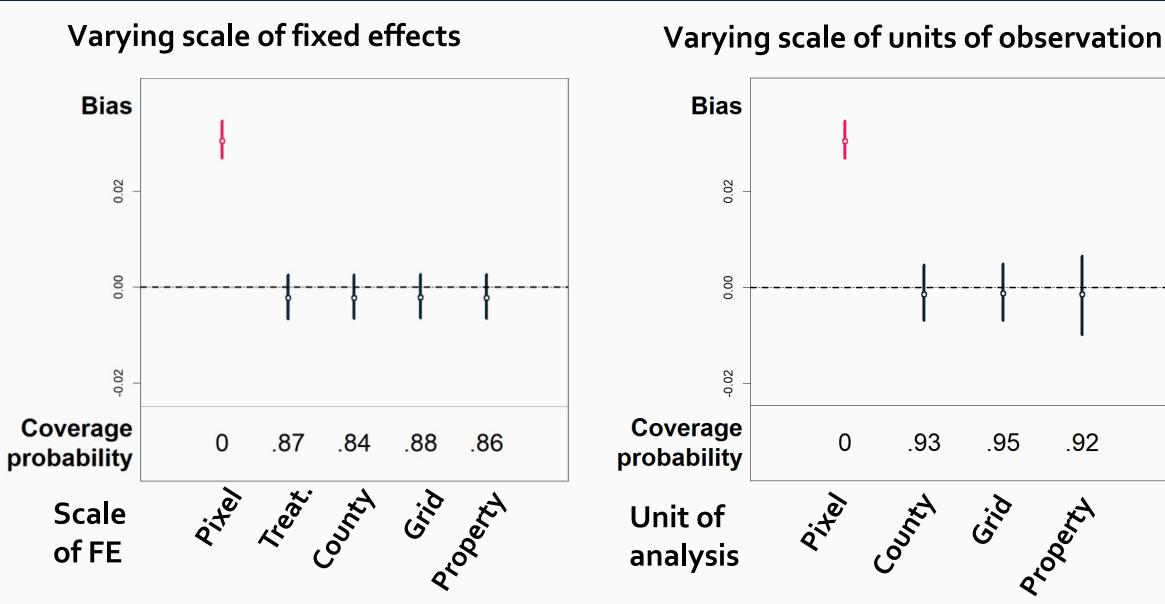


#### Varying scale of fixed effects



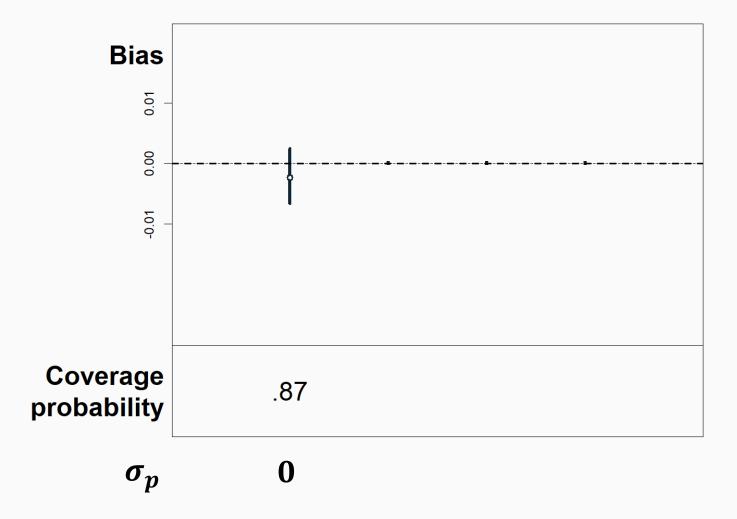
#### **Property**





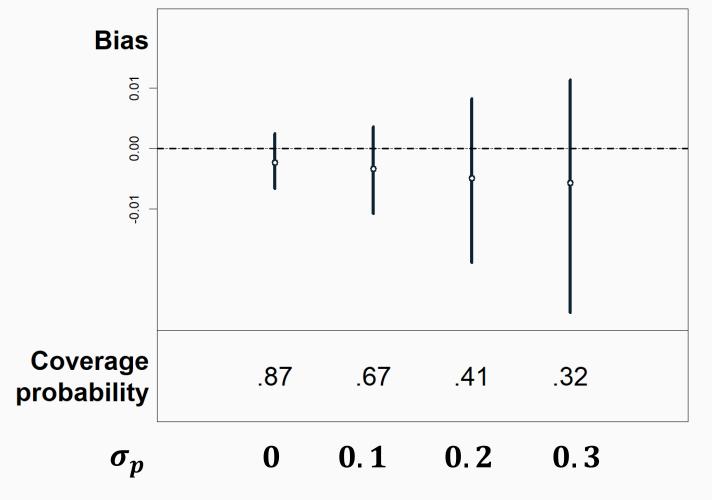


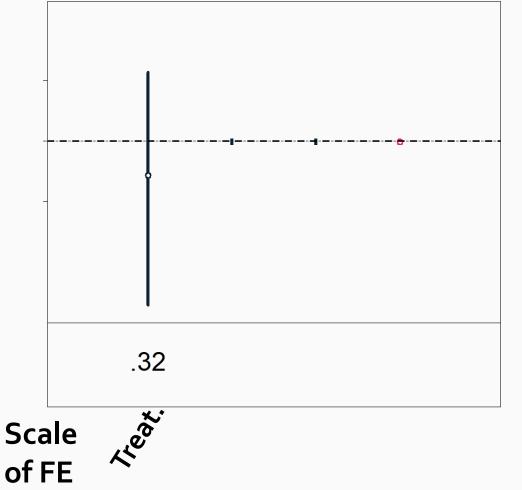
#### Increasing property-scale disturbances



Increasing property-scale disturbances within difference in differences model

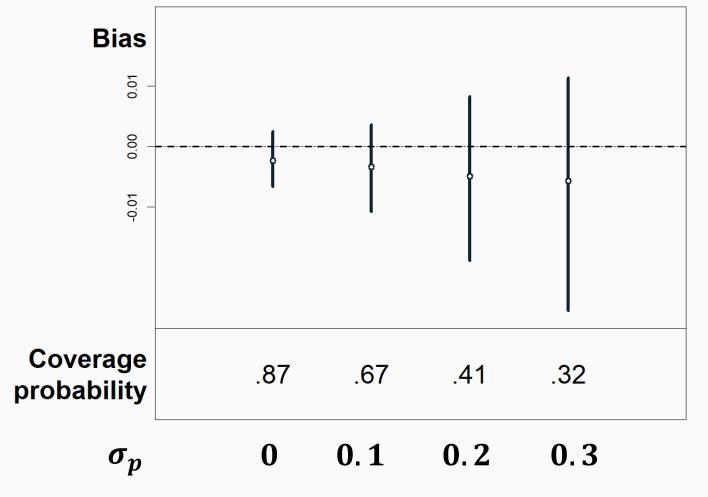
Varying units of observation with high property-level disturbances ( $\sigma_p = 0.3$ )

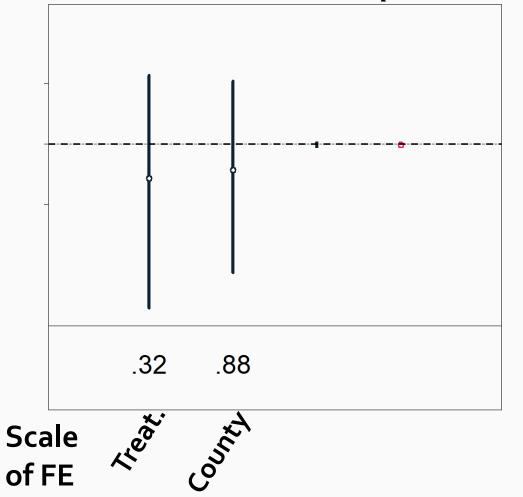




Increasing property-scale disturbances within difference in differences model

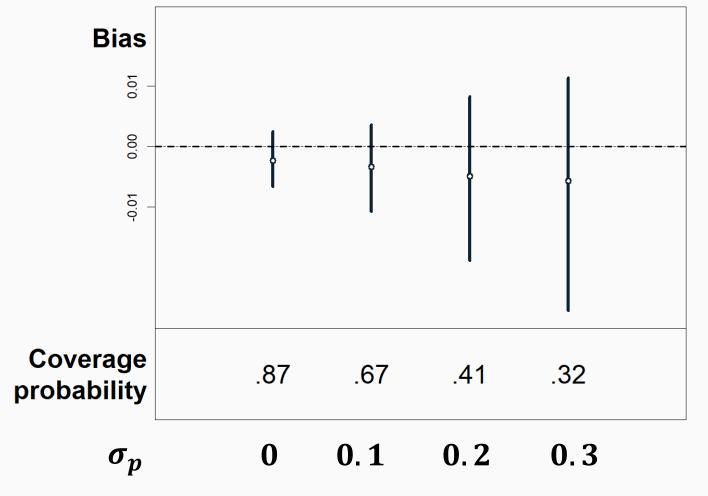
Varying units of observation with high property-level disturbances ( $\sigma_p=0.3$ )

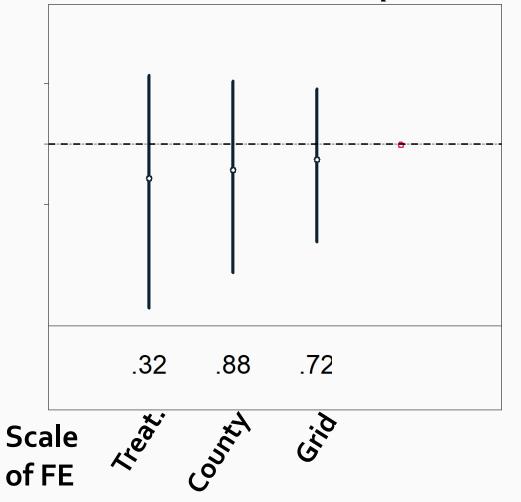




Increasing property-scale disturbances within difference in differences model

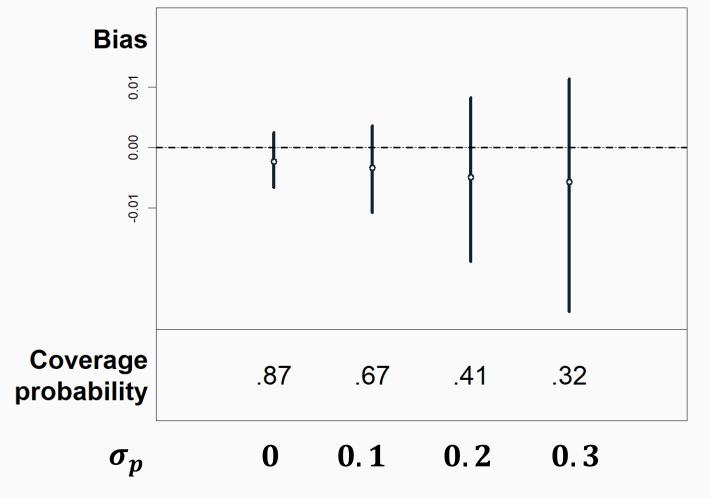
Varying units of observation with high property-level disturbances ( $\sigma_p=0.3$ )

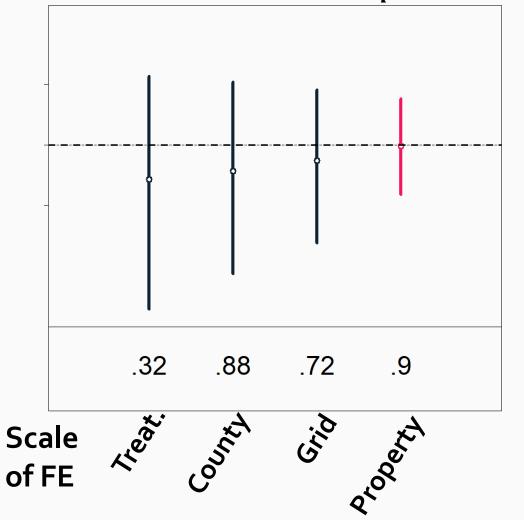




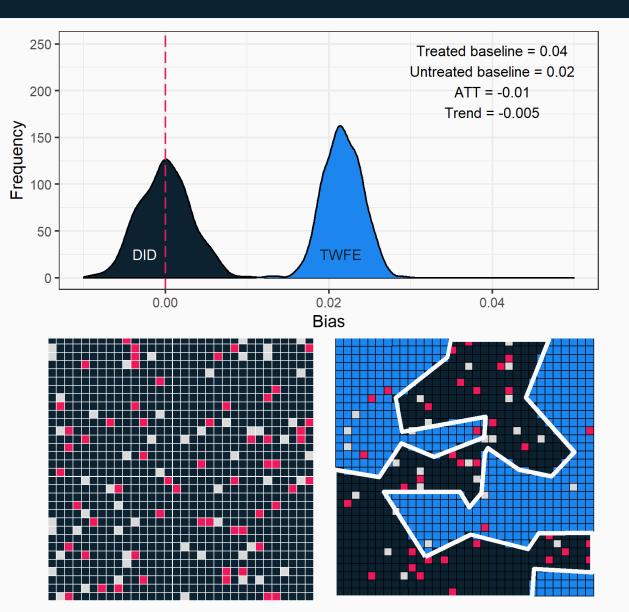
Increasing property-scale disturbances within difference in differences model

Varying units of observation with high property-level disturbances ( $\sigma_p = 0.3$ )



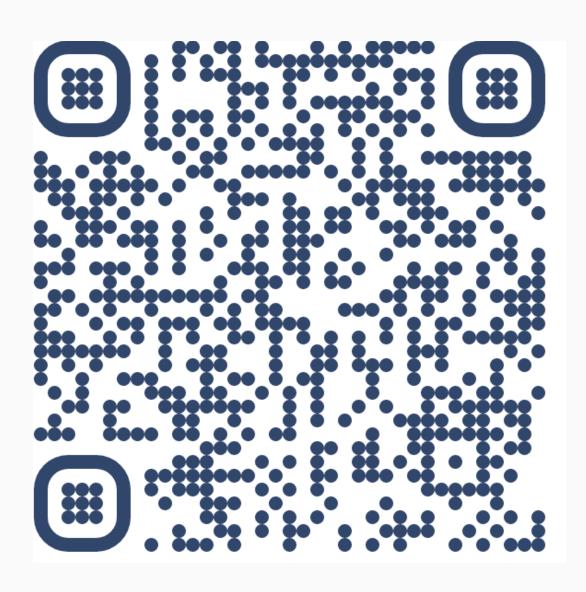


### Opportunities and challenges



- Interdisciplinary collaboration opens doors to new data and methods
- Causal inference + remote sensing has yielded critical insights to guide more effective ecosystem management
- But, requires caution standard tools from one field may need modification for others
- What opportunities, and challenges, emerge as we begin to quantify impact using novel biodiversity data?

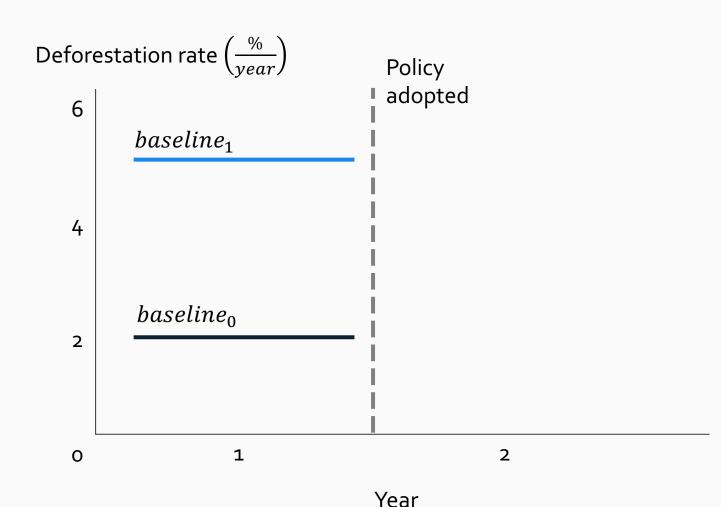
## Full paper covers...



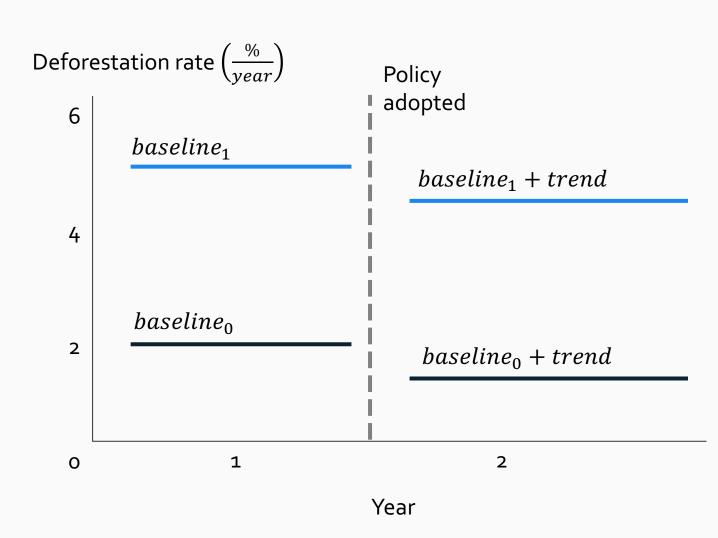
- Selection bias due to attrition
- Survival model designs
- Impact of different measures of deforestation
- Staggered adoption
- Heterogeneous treatment effects



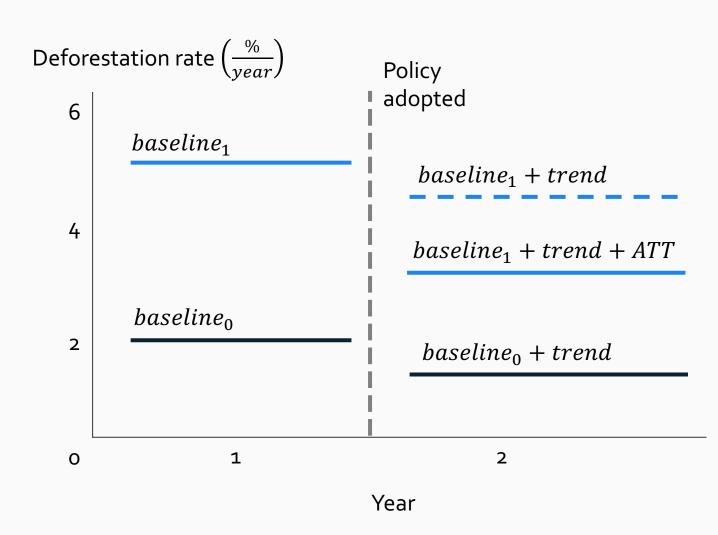
- baseline<sub>0</sub>: Pre-treatment deforestation rate outside of treatment area
- baseline<sub>1</sub>: Pre-treatment deforestation rate inside of treated area



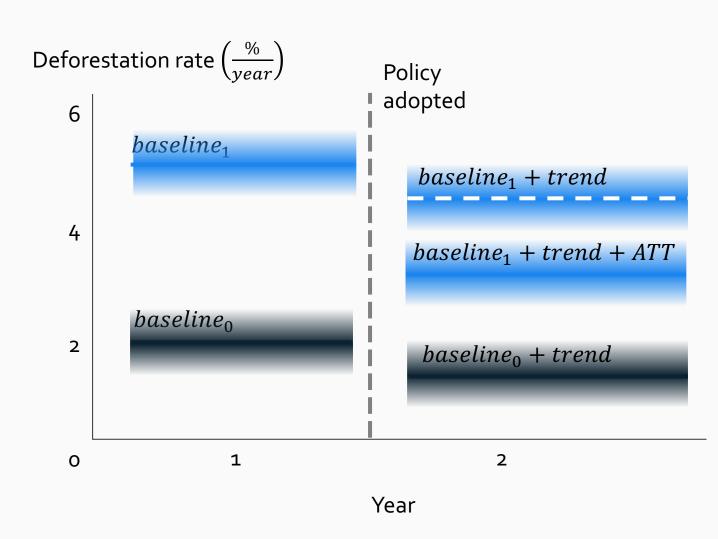
- baseline<sub>0</sub>: Pre-treatment deforestation rate outside of treatment area
- baseline<sub>1</sub>: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods



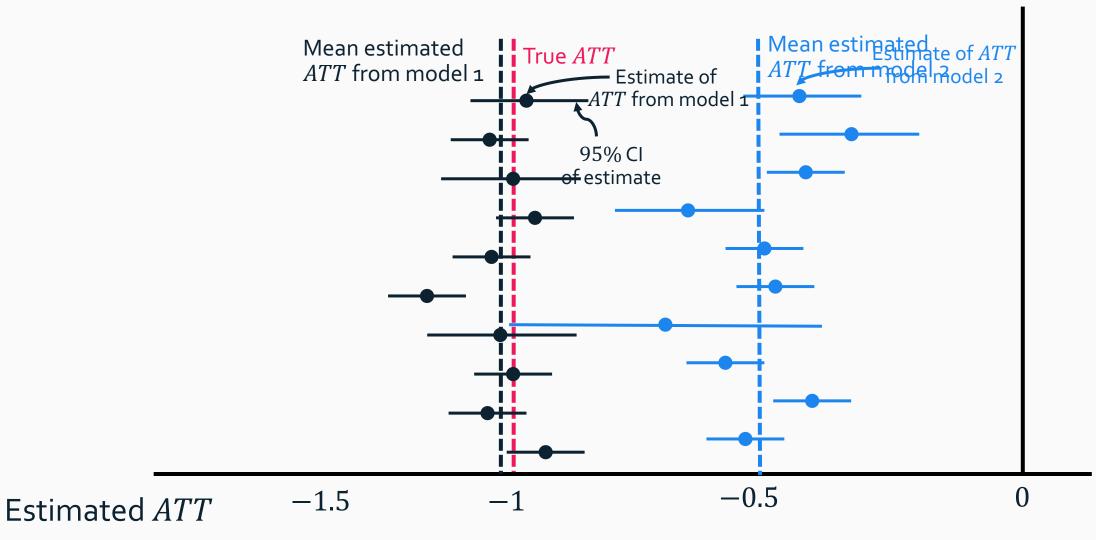
- baseline<sub>0</sub>: Pre-treatment deforestation rate outside of treatment area
- baseline<sub>1</sub>: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods
- *ATT*: The impact that the policy has on the deforestation rate inside treatment area



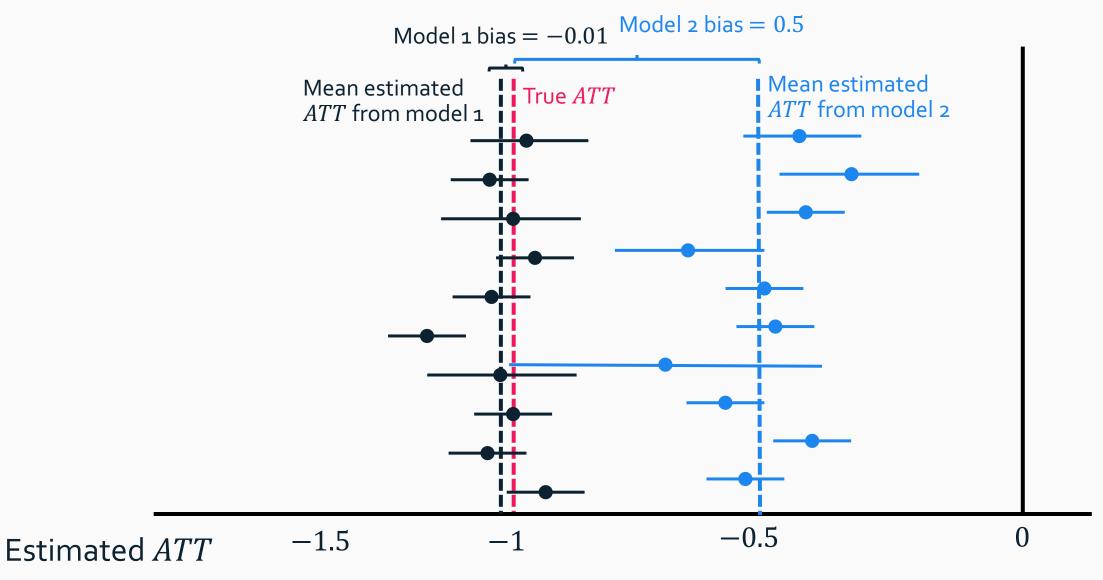
- baseline<sub>0</sub>: Pre-treatment deforestation rate outside of treatment area
- baseline<sub>1</sub>: Pre-treatment deforestation rate inside of treated area
- *trend*: Common trend in deforestation rates across the two time periods
- *ATT*: The impact that the policy has on the deforestation rate inside treatment area
- $\alpha_i$ ,  $\rho_v$ ,  $\mu_{i,t}$ : Normally distributed, random variables representing pixel, property and pixel-by-year random disturbances



#### Evaluation of candidate models



#### Evaluation of candidate models – Bias



### Evaluation of candidate models – Coverage

