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Making machine learning matter to clinicians: model
actionability in medical decision-making
Daniel E. Ehrmann 1,2✉, Shalmali Joshi3, Sebastian D. Goodfellow1,4, Mjaye L. Mazwi1,5,7 and Danny Eytan1,6,7

Machine learning (ML) has the potential to transform patient care and outcomes. However, there are important differences
between measuring the performance of ML models in silico and usefulness at the point of care. One lens to use to evaluate models
during early development is actionability, which is currently undervalued. We propose a metric for actionability intended to be used
before the evaluation of calibration and ultimately decision curve analysis and calculation of net benefit. Our metric should be
viewed as part of an overarching effort to increase the number of pragmatic tools that identify a model’s possible clinical impacts.
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INTRODUCTION
There is tremendous interest in applying machine learning (ML)
to the many unsolved problems in healthcare. Published models
can augment clinician awareness, perform diagnostic tasks,
forecast clinically relevant events, and guide the clinical decision-
making process1. However, despite enormous promise and
investment, there has been a relatively limited translation of
these models to the point of care2. This failure of implementation
is problematic as it limits the ability to evaluate model efficacy
against real-world outcomes.
The reasons for the lack of ML adoption are multifactorial3. In

addition to resource constraints (e.g., lack of data availability,
technical infrastructure, certain therapeutic options, and clinical
champions), one important barrier to ML adoption may be that
many metrics currently used to evaluate and report model
performance (e.g., F1 score, area under the receiver operating
curve, calibration, discrimination, etc.) don’t reflect how a model
would augment medical decision-making4. This preoccupation
with optimizing traditional performance metrics instead of more
clinically applicable ones is a missed opportunity to understand
whether a model is likely to be actionable to clinicians faced with
a clinical dilemma.
We view actionability as a characteristic of models that reflects

their ability to augment medical decision-making when compared
to clinician judgment alone. The best single metric measuring a
model’s clinical utility is net benefit5, which estimates the
relationship between a model’s benefits and harms across a
range of probability thresholds of decision and disease. Decision
curves can be constructed that estimate whether ML or other
predictive models would be of higher utility (i.e., net benefit) if
acted upon compared to different models or other strategies for
testing/treating (e.g., test/treat all patients). If a given model has a
higher net benefit compared to alternatives, no matter how much
the size of the difference, then the use of the model to make the
relevant clinical decision would improve clinical outcomes
compared to alternatives. Unfortunately, currently, the net benefit
is an underutilized metric, and we feel it should be reported for
almost every ML model so readers can better understand its
potential utility at the bedside.

However, decision curve analysis is intended to be used on
refined models during the final stages of model evaluation. As
such, it is not routinely used during early model development. This
paper proposes a metric that may aid in identifying a model’s
actionability early in development, before evaluation of calibration
and ultimately decision curve analysis and calculation of net
benefit. Our intent is not to replace traditional metrics of model
performance, as they are necessary (but not sufficient) for clinical
utility nor replace net benefit. Rather, we view our metric as a
clinically oriented filter through which some models should pass
early during model development. More broadly, we seek to
expand the available tools that holistically evaluate a model’s
potential clinical impacts.

ASSESSING ACTIONABILITY THROUGH THE LENS OF
UNCERTAINTY
If we define actionability as a characteristic of models that reflects
their ability to augment medical decision-making when compared
to clinician judgment alone, how might actionable ML augment
medical decision-making?
Imagine a clinician must make a diagnosis for a critically ill

patient with a fever and then choose an appropriate sequence of
treatments based on that diagnosis. Clinicians typically first rank
reasonable diagnoses in order of probability in a “differential
diagnosis” list based on a complex process of collating, filtering,
and weighting data that is often flawed. For example, the clinical
history might be incomplete, the physical examination might be
unreliable or misleading6,7, and tests might be non-specifically
abnormal, inaccurate, or non-diagnostic8 such that the most
probable diagnosis on the differential diagnosis list is wrong up
to 40% of the time9. Even if the clinician chooses the correct
diagnosis or diagnoses, they nowmust decide on which treatments
to prescribe and in which order. Making this determination is often
challenged by multiple potential modifiers at the patient level (e.g.,
the severity of illness, demographics, comorbidities, treatment side
effect profiles), provider level (e.g., role, prior training, experience,
biases), and system level (e.g., access to certain treatments, cost of
treatment). Population-based comparative effectiveness studies
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and guidelines may provide some guidance, but their application
to individual cases can be challenging10 and there remains
substantial variability in practice and outcomes for even common
clinical problems11.
Whether at the “diagnosis” or “action” phase of medical

decision-making, the clinical dilemma illustrated above is riddled
with uncertainty. Excessive uncertainty in medical decision-
making is associated with delayed diagnosis12, variations in
practice13, clinician dissatisfaction/anxiety14, over testing15,16,
medical errors17, and patient harm18. Uncertainty reduction
exposes optimal diagnostic or therapeutic choices and removes
the friction between competing choices that are associated with
either decision paralysis or a “shotgun” approach familiar to
many clinicians (where multiple pathways of investigation/
treatment are pursued non-specifically and simultaneously, often
at increased cost and harm to the patient than a more tailored
strategy). Therefore, models that have the tendency to reduce
uncertainty in complex clinical scenarios may be valued highly
by clinicians, yet there are no ML evaluative metrics specifically
designed with this in mind.

MEASURING ACTIONABILITY BY QUANTIFYING UNCERTAINTY
REDUCTION
We propose a metric that measures a model’s ability to potentially
augment medical decision-making by reducing uncertainty in
specific clinical scenarios. Practically, we envision this metric being
used during the early phases of model development (i.e., before
calculating net benefit) for multiclass models in dynamic care
environments like critical care, which are becoming increasingly
common in healthcare19–23.
To introduce our metric mathematically, we first contend that

reducing uncertainty in medical decision-making might mirror
the considerations of a partially observable Markov Decision
Process (POMDP). In a POMDP framework, the clinician seeks to
determine the “correct” diagnosis (in their belief state) and
“optimal” treatment by predicting outcomes given a particular
action taken. As such, there are two key probability distributions
involved: one at the diagnosis phase where the clinician seeks to
clarify the distribution of possible diagnoses, and a second at
the treatment phase where the clinician seeks to clarify the
distribution of future states given actions (i.e., treatments)
chosen. Actionable ML should reduce the uncertainty of these
distributions.
The degree of uncertainty reduction in these key distributions

can be quantified on the basis of entropy. Entropy is a measurable
concept from information theory that quantifies the level of
uncertainty for a random variable’s possible outcomes24. We
propose that clinicians may value entropy reduction, and our
actionability metric is therefore predicated on the principle that
actionability increases with ML’s ability to progressively decrease
the entropy of probability distributions central to medical
decision-making (Fig. 1).
Returning to the multiclass model that predicts the diagnosis in

a critically unwell patient with fever (among a list of possible
diagnoses such as infection, malignancy, heart failure, drug fever,
etc.), an ML researcher might use the equation below. The
equation is for illustration purposes, acknowledging that addi-
tional data are needed to determine the reasonable diagnoses in
the differential diagnosis list and their baseline probabilities. This
“clinician alone” model might be obtained by asking a sample of
clinicians to evaluate scenarios in real-time or retrospectively to
determine reasonable diagnostic possibilities and their probabil-
ities based on available clinical data.
For each sample in a test dataset, the entropy of the output

from the candidate model (i.e., the probability distribution of
predicted diagnoses) is calculated and compared to the entropy
of the output from the reference model, which by default

is the clinician alone model but can also be other ML models.
The differences are averaged across all samples to determine the
net reduction in entropy (ML—reference) as illustrated below
using notation common to POMDPs:
(1) Clinician Alone Model:

Hs
c ¼ �

X

st2S
pcðstjotÞlog pcðstjotÞ

(2) With ML Model 1:

Hs
m1 ¼ �

X

st2S
pm1ðstjotÞlog pm1ðstjotÞ

(3) With ML Model 2:

Hs
m2 ¼ �

X

st2S
pm2ðstjotÞlog pm2ðstjotÞ

Whereby, st 2 S is the patient’s underlying state (e.g., infection) at
time t within a domain S corresponding to a set of all reasonable
possible states (e.g., different causes of fever, including but not
limited to infection) and ot 2 Oare the clinical observations (e.g.,
prior diagnoses and medical history, current physical exam,
laboratory data, imaging data, etc.) at time t within a domain O
corresponding to the set of all possible observations.
Therefore, the actionability of the candidate ML model at the

diagnosis (i.e., current state) phase (Δs) can be quantified as:
Δs ¼ Hs

0 � Hs
m, where Hs

0 is the entropy corresponding to the
reference distribution (typically the clinician alone model,
corresponding to Hs

c).
Basically, the model learns the conditional distribution of the

various possible underlying diagnoses given the observations (see
example calculation in supplemental Fig. 1). The extent of a
model’s actionability is the measurable reduction in entropy when
one uses the ML model versus the reference model.
Continuing with the clinical example above, the clinician must

then choose an action to perform, for example, which antibiotic
regimen to prescribe among a choice of many reasonable
antibiotic regimens. Each state-action pair maps probabilistically
to different potential future states, which therefore have a
distribution entropy. Acknowledging that additional data are
needed to define the relevant transition probabilities p�ðstþ1jst;atÞ
(i.e., benefit:risk ratios) for each state-action pair (which ideally
can be estimated by clinicians or empirically derived data from
representative retrospective cohorts) an ML researcher might
perform an actionability assessment of candidate multiclass
models. The actionability assessment hinges on comparing the
entropies of the future state distributions with and without ML
and is calculated in a similar fashion to the diagnosis phase,
where differences in distribution entropy (reference model -
candidate ML model) are calculated for each sample in the test
dataset and then averaged. The following equation, or a variation
of it, might be used to determine actionability during the
treatment phase of care:
Future state probability distribution (P (st+1|st)
(4) Without ML (e.g., clinician alone action/policy):

pcðstþ1jstÞ ¼
X

at2A
p�ðstþ1jst;atÞπcðatjstÞ

(5) With ML (e.g., the trained model recommended action/
policy):

pmðstþ1jstÞ ¼
X

at2A
p�ðstþ1jst;atÞπmðatjstÞ

Whereby, St+1 is the desired future state (e.g., infection resolution),
St is the current state (e.g., fever) at time t, at 2 A is the action
taken at time t within a domain A corresponding to a set of
reasonable possible actions (i.e., different antibiotic regimens),
πcðatjstÞ is the policy chosen by the clinician at time t (e.g., treat
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with antibiotic regimen A) and πmðatjstÞ is the policy recom-
mended by ML at time t (e.g., treat with antibiotic regimen B).
Entropy (H) of the future state probability distribution
Each future state probability distribution comes from a

distribution of possible future states with associated entropy,
which we illustrate as:
(6) Without ML:

Ha
0 ¼ �

X

stþ12S
p0ðstþ1jstÞlog p0ðstþ1jstÞ

(7) With ML:

Ha
m ¼ �

X

stþ12S
p0ðstþ1jstÞlog pmðstþ1jstÞ

Therefore, the actionability of the candidate ML model at
the action (i.e., future state) phase (Δa) can be quantified as
Δa ¼ Ha

0 � Ha
m, where Ha

0 is the entropy corresponding to the
reference distribution (typically the clinician alone model).
The model essentially learns the conditional distribution of

the future states given actions taken in the current state, and
actionability is the measurable reduction in entropy when one

uses the ML model versus the reference (typically clinician
alone) model.

CONCLUSIONS
Despite the tremendous promise, the adoption of ML for
challenging decisions in clinical practice remains relatively limited.
A key objective of this paper was to participate in a robust
conversation about what pragmatic metrics might help to evaluate
clinical utility more directly than traditional metrics of model
performance. The net benefit is the single best metric to evaluate a
model’s clinical impact at the bedside and it should be measured
and reported with greater frequency than currently found in the
ML literature. However, decision curve analysis should be
performed during the final stages of model evaluation, and we
propose another tool designed for early model development that
may have value to clinician end-users of ML designed for complex,
multiclass algorithms in dynamic care environments. When
hundreds of models or parametrizations of models are being
calibrated or tuned, we believe that researchers might apply
another clinically oriented filter by asking: to what extent might
candidate models be actionable, that is, augment medical decision-
making when compared to clinician judgment alone? We argued

Fig. 1 A conceptual schematic illustrating the typical relationship between machine learning actionability and entropy. Actionability
typically increases with decreasing entropy of the diagnostic possibility probability distribution and/or conditional future state probability
distribution during key phases of medical decision-making. S1 State 1, S2 State 2, S3 State 3, S4 State 4, Sn the Nth State.
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that actionability might be related to uncertainty reduction and
that uncertainty reduction could be measured using entropy
applied to key probability distributions in a POMDP framework.
The actionability and entropy reduction framework is not

perfect, and we acknowledge important limitations that preclude
its use later during model development (i.e., when net benefit
should be calculated) or in isolation. For example, we acknowl-
edge that a model that fails to significantly reduce entropy may
not necessarily lack clinical utility and conversely, a model that
significantly reduces entropy but otherwise performs poorly may
just be confidently wrong. Furthermore, uncertainty reduction is
likely important to medical decision-making, but the line
connecting uncertainty reduction and medical decision-making
is not absolute and linear but rather imperfect. For example, even
robust models that lower entropy relative to other models or
clinician judgment alone may not be actionable for a variety of
reasons (e.g., a lower entropy differential diagnosis may not
change the testing approach, a lower entropy future state
distribution may not be clinically modifiable and thus no action
is performed) and some models that increase entropy may be
actionable for a variety of reasons (e.g., models that “screen” for
diagnoses and introduce more uncertainty by appropriately
increasing the probability of diseases for patients felt to be at
low baseline risk). We acknowledge that our metric may also be
impacted by our arbitrary choice of targeting entropy reduction of
future state distributions when others may have targeted entropy
reduction of different policies. Last, our metric may be sensitive to
modeling techniques that impact the complexity of probability
distributions. A simple model that always predicts the probability
of a given diagnosis at 100% (and other reasonable diagnoses at
0%) will appear to have more actionability using the proposed
framework than a more complicated model that covers a wider
range of the probability space. Given these limitations, we
reiterate that our actionability metric should be considered a tool
that may help shed light on which models should proceed to
more rigorous evaluation prior to net benefit calculation and
eventual bedside deployment.
More broadly and importantly, our focus was not on proposing

the only, perfect, or best way measure actionability nor that
actionability assessments should replace existing metrics, such as
net benefit. Rather, we seek to foster necessary conversations on
the importance of model actionability. We hoped to introduce
important elements of that conversation by profiling the
importance of uncertainty in medical decision-making for clinical
problems and environments that will inevitably be the topic of
continued investigation in the ML community. We propose that
measuring a model’s ability to get it “right” or “wrong” (i.e., true
positives, false positives, etc.) is important, but so is a way to
understand the consequences of that ability (i.e., net benefit) and
the distribution of outputs in multiclass ML through the lens of
uncertainty and medical decision-making. Our approach, or a
similar approach, might spur important lines of investigation for
the field. For example, can quantifying uncertainty reduction
augment net benefit calculations in the special case of complex
multi-class problems? Might ML teams more frequently evaluate
project proposals through the lens of uncertainty and allocate
greater resources to problems that induce more clinical uncer-
tainty over those that induce less clinical uncertainty? Further
research will be required and should be actively encouraged.
A future characterized by greater emphasis on model action-

ability might not be imminent, but we provide one suggestion for
progress in that direction. A wider armamentarium of tools to
evaluate a model’s potential impacts at the bedside will be
required to unleash the power of ML for the benefit of clinicians
and patients.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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