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Abstract

We introduce robustness in restless multi-armed
bandits (RMABs), a popular model for constrained
resource allocation among independent stochastic
processes (arms). Nearly all RMAB techniques
assume stochastic dynamics are precisely known.
However, in many real-world settings, dynamics
are estimated with significant uncertainty, e.g., via
historical data, which can lead to bad outcomes
if ignored. To address this, we develop an algo-
rithm to compute minimax regret—robust policies
for RMABSs. Our approach uses a double oracle
framework (oracles for agent and nature), which is
often used for single-process robust planning but
requires significant new techniques to accommo-
date the combinatorial nature of RMABs. Specif-
ically, we design a deep reinforcement learning
(RL) algorithm, DDLPO, which tackles the com-
binatorial challenge by learning an auxiliary “A-
network” in tandem with policy networks per arm,
greatly reducing sample complexity, with guaran-
tees on convergence. DDLPO, of general interest,
implements our reward-maximizing agent oracle.
We then tackle the challenging regret-maximizing
nature oracle, a non-stationary RL challenge, by
formulating it as a multi-agent RL problem be-
tween a policy optimizer and adversarial nature.
This formulation is of general interest—we solve
it for RMABSs by creating a multi-agent extension
of DDLPO with a shared critic. We show our ap-
proaches work well in three experimental domains.

1 INTRODUCTION

Restless multi-armed bandits (RMABs), a model for con-
strained resource allocation among N independent stochas-
tic processes (arms), are widely studied. Traditionally a

binary-action problem, in which a planner decides whether
or not to act on each of N arms, here we consider the
multi-action generalization [Killian et al., 2021b| |Glaze{
brook et al.| [2011]] which more accurately captures chal-
lenging real-world planning problems. Salient examples of
RMABsS include scheduling [Bagheri and Scaglionel [2015|
Yang et al.|[2018]], machine replacement [Glazebrook et al.,
2006, Ruiz-Hernandez et al.| 2020], aerial vehicle routing
[Le Ny et al., [2008]], anti-poaching patrol planning [[Qian
et al., 2016, and healthcare [Lee et al., 2019, Mate et al.,
2020]. While these works have established important the-
oretical foundations, they share one key limitation: assum-
ing stochastic dynamics are precisely known. Having exact
knowledge of dynamics is impossible in many real-world
problems. For example, in healthcare intervention planning,
the probability that a patient will adhere to treatment after
receiving an intervention is not perfectly known a priori; in
anti-poaching patrol planning, the probability of finding a
poacher’s snare at some location is not known with certainty.

Accordingly, methods have been developed to learn RMAB
policies online, assuming no a priori knowledge [Jung et al.,
2019 |Wang et al., [2020]. However, these methods require
tens of thousands of samples to converge to good policies
which is prohibitive for many real-world problems, e.g., in
finite-length treatment settings such as tuberculosis [Mate’
et al., 2020] with only a few dozen rounds. Instead, real-
world planners must make the most of noisy data at hand,
estimating dynamics from historical data or consulting ex-
perts, inducing significant uncertainty. RMAB techniques
can be used to plan with point estimates, but we show that
ignoring uncertainty can lead to arbitrarily bad policies.

To address these shortcomings and push RMABs toward
wider real-world applicability, we introduce Robust RMAB:s,
a generalization of RMABs which allows stochastic dynam-
ics to be specified as uncertainty intervals, rather than point
estimates. This new problem is very computationally de-
manding, adding a combinatorial layer of complexity onto
an already PSPACE-hard problem [Papadimitriou and Tsit{
siklis| [1994]. Addressing this complexity gives rise to a
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rich set of challenges that necessitates the design of new
techniques that not only help solve the robust objective we
analyze, but also are of general interest to RMAB research.

Concretely, we plan under a minimax regret objective, using
a double oracle (DO) framework [McMahan et al., 2003
that has seen success in problems involving a single Markov
decision process (MDP) [Xu et al., 2021]]. The DO ap-
proach casts the robust planning problem as a zero-sum
game between an agent oracle and adversarial nature oracle.
However, existing techniques fail for any non-trivially sized
RMABES since the state and action spaces grow combina-
torially in the number of arms N and resource constraint
B, respectively. Specifically, given S-sized state spaces for
each arm, the full combinatorial problem has state space of
size SV and action space—and thus policy-network output—
of size (%) (for binary-action RMAB; action space is larger
with multi-action). At this size, we found that directly apply-
ing|Xu et al.|[2021] to solve the full combinatorial problem
as a single process fails to learn good policies for RMABs
as small as NV = 5 arms, with B = 3 and S = 2. Moreover,
under the minimax regret objective, the nature oracle is a
particularly difficult challenge as it requires jointly search-
ing the RMAB policy space and the continuous, uncertain
space of transition probabilities. Previously, this objective
has been posed as a non-stationary RL problem and solved
heuristically with a single policy network [Xu et al.| 2021]].
We improve the nature oracle by formulating it as a multi-
agent RL problem and develop a novel solution method for
RMABSs. In summary, our contributions are:

1. We introduce the Robust RMAB problem with interval
uncertainty over arm dynamics and develop techniques
to solve a minimax regret objective via double oracle.

2. To enable the DO approach, we introduce DDLPO, a
novel deep RL algorithm for RMABs, of general inter-
est. DDLPO tackles the combinatorial complexity of
RMABSs by learning an auxiliary “A-network” in tan-
dem with individual arm policy networks, which greatly
reduces training sample complexity. The procedure im-
plements the reward-maximizing agent oracle, has con-
vergence guarantees, and solves RMABs with multiple
action types [Killian et al., |2021b| |Glazebrook et al.|
2011]], the first deep RL procedure to do so. DDLPO also
easily extends to more general weakly-coupled MDPs
[[Adelman and Mersereaul, 2008, [Hawkins, 2003|] and en-
ables computing continuous-action policies, a previously
unstudied RMAB direction.

3. We formulate the non-stationary regret-maximizing na-
ture oracle as a multi-agent RL (MARL) problem, a
framework of potential general interest in robust plan-
ning. We solve this problem in the combinatorially hard
RMARB setting by extending DDLPO to include a shared
critic and a continuous-action policy network for nature’s
selection of the uncertain transition dynamics.

2 RELATED WORK

RMABs The reward-maximizing, binary-action RMAB
problem was introduced by |Whittle|[[1988]. His widely used
Whittle index policy [Mate et al., 2020, |Glazebrook et al.}
2006, Bagheri and Scaglionel 2015] is asymptotically op-
timal under indexability [Weber and Weiss,, [1990]. |Glaze{
brook et al.|[2011]] and |Hodge and Glazebrook! [2015] ex-
tended the Whittle index to multi-action RMABs with spe-
cial monotonic structure, while [Killian et al.[[2021b] gave a
more general Lagrange-based method. Hawkins|[2003] stud-
ied methods for weakly coupled Markov decision processes
(WCMDP), which generalize multi-action RMABs to have
multiple constraints, and propose Lagrangian solutions for
small problems. |Adelman and Mersereau| [[2008]] and |Goc+
gun and Ghate|[2012] followed by providing better solutions
to WCMDPs but sacrifice scalability. All these works as-
sumed precise knowledge of stochastic dynamics. Some
recent works have studied online RMABs with unknown
dynamics but all have prohibitively large sample complexity
[Gafni and Cohen, 2020, Jung and Tewari, 2019, Biswas
et al.| 2021} Killian et al., [2021al]. None consider robust
planning under environment uncertainty, which we address.

Our work also relates to learning algorithms for stochas-
tic multi-armed bandit (MAB) problems [[Min et al., 2020,
Boutilier et al.,[2020, Kuleshov and Precup| 2000]]. However,
since stochastic MABs follow a stateless reward process,
learning algorithms utilize the fact that the true optimal pol-
icy simply selects the top B reward-producing arms each
round. Conversely, the arms in restless MABs have reward
processes that follow MDPs, so the top B arms to play each
round is state- and action-dependent and constantly evolv-
ing, making both the learning and the planning problems
much more challenging, and which our algorithms address.

RL for RMABs A few recent works learn Whittle in-
dices for indexable binary-action RMABs using (i) deep RL
(DRL) [Nakhleh et al.l 2021] and (ii) tabular Q-learning
[Biswas et al.l 2021} |[Fu et al.l 2019, |Avrachenkov and
Borkar, 2022]. |Killian et al.| [2021a]] take tabular Q-learning
to the multi-action setting. In contrast, our DRL approach
provides a more general solution to binary and multi-action
RMAB domains, not requiring indexability or problem struc-
ture, and is far more scalable than tabular methods. We are
also the first to handle continuous-action RMABs, key to
the nature oracle. Also related is the space of combinatorial
RL. However, most existing algorithms consider single-shot
problems, e.g., traveling salesman [Kool et al.| 2019, [Khalil
et al.,[2017]], which lack a notion of future state that is critical
to solving any version of RMAB, and none accommodate
the general cost/budget structure of multi-action RMAB
[Song et al.l 2019]; our methods address these limitations.

Robust planning Work on robust planning in RL mainly
focuses on maximin reward via robust adversarial RL [Pinto



et al.l |2017] or multi-agent RL (MARL) [Lanctot et al.,
2017, [Li et al.,|2019]], but maximin reward leads to overly
conservative policies [Nguyen et al.,|2014]]. The minimax
regret criterion [Braziunas and Boutilier, [2007] avoids this
pitfall, but this objective is challenging with very large or
continuous strategy spaces. This can be addressed with the
DO approach proposed by [McMahan et al.| [2003]] which
explores a small subset of strategies while still guaranteeing
optimal convergence [Gilbert and Spanjaard, 2017]. Subse-
quently, DO has been extended to optimize MARL problems
with multiple selfish agents [Lanctot et al.,2017]]. Recently,
Xu et al.|[2021]] used DO to solve a single Markov deci-
sion process (MDP) minimax-regret planning problem and
used RL to implement the oracles. However, when applied
to RMABS, the number of outputs in their policy network
grows exponentially, as does the size of the state space being
learned, both of which require prohibitively long training
times beyond trivially sized RMABs. Accordingly, we found
that their RL algorithms failed to scale past N = 5 arms
and S = 2 states, whereas we show in Sec. E]that our algo-
rithms solve problems that are orders of magnitude larger.
Additionally, their approach is designed only for contin-
uous state/action spaces, whereas our approach can find
robust policies for any combination of discrete or continu-
ous state/action spaces. We accomplish this via our novel
formulation of the nature oracle as a MARL problem, which
decomposes the causes of non-stationarity, i.e., agent and
nature, and learn them with separate networks.

3 PRELIMINARIES

We consider the multi-action RMAB setting with N
arms [Killian et al., 2021bl |Glazebrook et al. [2011]],
which generalizes classical binary-action RMABs [Whit{
tlel 1988]D Each arm n € [N] follows an MDP
(Sny An,Cp, Ty, Ry, B), where S, is a set of finite, discrete
states; A,, is a set of finite, discrete actions; C,, : A, — R
defines action costs, where C,,[0] = 0 encodes a no-cost
“passive action” for all arms; T}, : S, X A, X S, — [0, 1]
gives the probability of transitioning from one state to an-
other given an action; R,, : S;, — R is a reward function;
and 3 € [0, 1) is the discount factor. For ease of exposition,
let S, An,Cp, and R,, be the same for all n € [N], and
thus drop the subscript n, though all methods apply to the
general case. Let s be an N-length vector of states over all
arms and let A € {0,1}V*IAl be a decision matrix that
one-hot-encodes the action taken on each arm. The planner
computes policies 7 which map states s to actions A with
the constraint that the sum cost of actions is less than a
budget B in every round ¢t € [H].

We extend multi-action RMABs to the robust setting in
'Our approaches also easily extend to weakly-coupled MDPs,

which allow multiple budget constraints [Hawkins| 2003], as well
as to continuous-action RMABSs, previously unstudied.

which the exact transition probabilities are unknown. In-
stead, the transition dynamics 7;, of each arm n € [N] are
determined by a set of parameters w,, € {2,,, each within a
given interval uncertainty @,, := |w,,,w,]. Let w be a given
parameter setting such that w,, € @,, for all n € [N]. Let
G(m,w) = B[22, B > oneiv B(st) | m,w] be the plan-
ner’s expected discounted reward under 7 and w, where s,
is the state of arm n at time ¢. Then, regret is defined:

L(m,w) = G(r},w) — G(m,w) , (1
where 7, is the optimal reward-maximizing policy under
w. In our robust setting, our objective is to compute a pol-
icy ! that minimizes the maximum regret L possible for

any realization of w, i.e.:

7' = min max L(m,w) . 2)
This problem is computationally expensive to solve since
simply computing a policy 7 that maximizes the reward
G(m,w) is PSPACE-hard [Papadimitriou and Tsitsiklis|
1994] even when the T, are known, i.e., w is given.

A more tractable approach for computing multi-action
RMAB policies 7 is to utilize the Lagrangian relaxation
[Hawkins| 2003} |[Killian et al., [2021b]], reproduced below.
For a given w, the optimal policy 7, maximizes the con-
strained Bellman equation:

N
J(s) = max {Z R(sn) + BEJ(s) | s, Aﬂ} 3)

where A° C A
N |A] [ A

StZZAnJCJSB ZAn]:]. VHG[N]

n=1j=1 j=1

where A,; = 1 if the j™ action is taken on arm n (else
0) and ¢; € C is the j™ action cost. We then take the
Lagrangian relaxation of the budget constraint [[Hawkins|
2003]], giving:

J(s, ) = HllIl ( Z max {Q,,( Snaanja/\)}>

17€lAl
“
where Q,,(Sp, anj, A) = R(s,) — Acj+
BE. [Qn(sy, anj, X) | 75 (V)] - ©)

Here, a,,; is the j‘h action of arm n, @ is the state-action
value function, and 72%(\) is the optimal policy for a given
A. The key insight is that this relaxation decouples the value
functions of the arms, except for the shared A, i.e., for a
given value of A, all @,, could be solved via IV individual
value iterations. However, finding and setting A := A\* is crit-
ical to finding good policies for multi-action RMABs [Kil{
lian et al., 2021b, Glazebrook et al., 2011], where wZ%(\*)
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Figure 1: (a) Proposed framework for solving the Robust RMAB problem. The main loop follows a DO approach to
iteratively compute a minimax regret optimal RMAB policy where each oracle is a novel DRL algorithm for RMABs.
(b) The nature oracle: a novel multi-agent RL formulation of RMAB, that tackles non-stationarity with a centralized critic.

is used to recover a policy that respects the original budget
constraint by solving a knapsack with Q,, (8, an;, \*) as
values, C as weights, and the constraints of Eq. then taking
the actions according to the @),, in the solved knapsack. The
knapsack solution finds the combination of actions with the
largest sum of learned Q,,(Sn, anj, A*) values which still
respects the budget. The integer program for the knapsack is
given in Appendix [B|and has time complexity O(N|.A|B)
[Killian et al.,2021b]].

4 SOLVING ROBUST RMABs

We now build our approach for finding robust RMAB poli-
cies, visualized in Fig.[T{a). We use an iterative DO approach
which achieves the minimax regret objective of Eq.[2|by cast-
ing the optimization problem as a zero-sum game between
two players: an agent which learns policies 7 to minimize
regret, and an adversarial nature which selects environment
parameters w to maximize regret of the agent. In this two-
player game, the pure strategy space for the agent is the
set of all feasible RMAB policies 7 that respect the budget
constraint. The pure strategy space for nature is a continu-
ous, closed set of parameters w within the given uncertainty
intervals. The algorithm maintains a pure strategy set for the
agent and nature (Fig. Eka) left boxes); each iteration, these
strategy sets are used to compute a mixed strategy—i.e., a
probability distribution over pure strategies—Nash equilib-
rium in a regret game (Fig. [T[(a) center). Each oracle then
learns a best response against the opponent’s mixed strategy
to add to its strategy set (Fig.[T[a) right boxes).

The agent oracle’s goal is to find an RMAB policy , or
pure strategy, to minimize regret (Eq. [I) given a nature
mixed strategy @. That is, the agent minimizes L(w, &) w.r.t.
m, while @ is constant. Recall from Eq. [1|that L(7,®) =

G(7%, &) — G(m,@). Since @ and 7% are constant, then
the first term G(n%, ) is also constant. Thus minimiz-
ing L(m,®) is equivalent to maximizing the second term
G(m, &), which is maximal at 7 = 7. In other words, the
agent oracle must compute an optimal reward-maximizing
policy w.r.t. @. Such a reward-maximizing objective aligns
with existing RL techniques, but still requires that we ad-
dress the challenge of learning in the combinatorial state
and action spaces of the RMAB. To address this challenge,
we propose a new RL method which decomposes the RMAB
into N per-arm learning problems and a complementary
A-network learning problem, which together learn to spend
limited budget where it will give the best return, detailed in

Sec.ld11

Conversely, the nature oracle seeks to find a parameter set-
ting w, or pure strategy, that maximizes the agent’s regret
given a mixed strategy 7, i.e., maximize L(7,w) with re-
spect to w, while 7 is fixed. This objective is even more chal-
lenging because both G(7;, w) and G (7, w) are functions of
w. Most critically, computing G(7}, w) requires obtaining
an optimal policy 7, as w changes in the optimization—this
amounts to a planning problem in which an agent must learn
an optimal policy while the environment changes, controlled
by w, making the nature oracle difficult to solve. Moreover,
in the interval uncertainty setting we consider, w is defined
by a space of continuous values; thus nature’s pure strategy
space is infinite, making the problem even more complex,
since it cannot be exhaustively searched.

To tackle this complexity we propose a novel method for
implementing the regret-maximizing nature oracle by cast-
ing it as an MARL problem. The approach, visualized in
Fig.[I(b), trains one auxiliary agent to solve for a policy 7,
(74 in Fig. b)), needed to compute G(75,w) in the re-
gret term, and simultaneously trains a second agent to learn
worst-case parameters w (7B in Fig. b)) that minimize



Algorithm 1 DDLPO

Algorithm 2 DDLPO-Act

Input: Initial state s(, nature mixed strategy @,
n_epochs, n_subepochs, n_steps

1: Init. policy networks 6,, for each arm n € [N]

2: Init. critic networks ¢,, for each arm n € [V]

3: Init. A-network A

4: Init. buff =[] and s = s¢

5: for epoch =1,2,...,n_epochs do

6:  Sample A\ = A(s)

7:  Sample w ~ @

8. for subepoch = 1,... ,n_subepochs do

9: for timestept = 1,...,n_steps do
10: Sample actions a,, ~ 6,,(s,,\) Vn € [N]
11: s, 7 = Simulate(s,a,w)
12: Add tuple (s,a,r,s’,\) tobuff
13: s=3¢
14: Update each (6,,, ¢,,) pair via PPO, using trajecto-

riesin buff
15:  Update A via Prop.[I] with costs of final subepoch
16: return 6y,...,05, ¢1,...,¢n and A

G(7,w)—together, these will maximize the regret L(7, w).
With this MARL setup, we mitigate nonstationarity through
centralized critic networks which allow each agent to in-
clude the other’s actions in their learned state space. Solving
a MARL problem requires an RL algorithm to optimize
the underlying policy, so we first introduce our novel RL
approach, DDLPO, to solve RMABs (Sec. [.1)) as a part of
our agent oracle and then use the algorithm as the backbone
of our nature oracle (Sec.[4.2).

4.1 AGENT ORACLE: DEEP RL FOR RMAB

Existing DRL approaches can be applied to the objective in
Eq.[3] but, as detailed in Sec. [2] they fail to scale past trivially
sized RMAB problems since the action and state spaces
grow exponentially in N. To overcome this, we develop
a novel DRL algorithm that instead solves the decoupled
problem (Eq. ). The key benefit of decoupling is to render
policies and @ values of each arm independent, allowing us
to learn IV independent networks with linearly sized state
and action spaces, relieving the combinatorial burden of
the learning problem. However, this decoupling approach
introduces a new technical challenge in solving the dual
objective which maximizes over policies but minimizes over
\, as discussed in Sec.

To solve this, we derive a dual gradient update procedure
that iteratively optimizes each objective as follows: (1) hold-
ing A constant, learn N independent policy networks via
policy gradient, augmenting the state space to include A as
input, as in Eq. 4} (2) use sampled trajectories from those
learned policies as an estimate to update A towards its min-

Input: State s, costs C, budget B, agent actor, critic, and A
networks 61, ...,0n, ¢1,...,0nN, A, selection method «

L1 A=A(s)
2: if a == ‘GreedyProba’ then
3 pp=0n(sn,A) Vn € [N] / Action distr. of arm n
4: a=GreedyProba(p,C,B) // Greedily select
highest probability actions until budget B is reached
else if o == ‘QKnapsack’ then
Gnj = Gn(5msanj, ) ¥ € [N],¥j € [|A]
7: a=QKnapsack(q,C, B) // Solve knapsack in
Appendix|B|
8: else if o == “Whittle’ then // Binary action only
9:  a = BINASEARCH(S, B, ¢1, ..., o)) // Appendix|B|
10: return a

AN

imizing value via a novel gradient update rule. Another
challenge is that A* of Eq. 4| depends on the current state
of each arm—therefore, a key element of our approach is
to learn this function \*(s) concurrently with our iterative
optimization, using a neural network we call the A-network
that is parameterized by A. To train the A\-network, we use
the following gradient update rule.

Proposition 1. To learn the value )\ that minimizes Eq.
given a state s, the A\-network, parameterized by A, should
be updated with the following gradient rule:

B N
A=A 1—« (1_6 + Z Dy, (sn, )\t—l(s))> (©)
n=1

where a is the learning rate and Dy, (sy, \) is the negative
of the expected [3-discounted sum of action costs for arm n
starting at state s,, under the optimal policy for arm n for a
given value of ).

As D, lacks a closed form, the key insight we make is
that it can be estimated by sampling multiple rollouts of
the policy networks of all arms during training. As long as
arm policies are trained for adequate time on the given
value of A, the gradient estimate will be accurate, i.e.,
D (80, M—1(8)) ~ — S o' ¥k where K is the number
of samples collected in an epoch and c£ is the action cost of
arm n in round k. Moreover, this procedure will converge to
the optimal parameters A* if the arm policies are optimal.

Proposition 2. Given arm policies corresponding to op-
timal Q-functions, Prop. [I|will lead A to converge to the
optimal as the number of training epochs and K — oc.

Proofs are given in Appendix[A] One interesting feature of
this update rule is that to collect samples that reflect the
proper gradient, the RMAB budget must not be imposed at
training time—rather, the policy networks and A-network



must be allowed to learn to play the Lagrange policy of Eq. [}
which learns to spend the correct budget in expectation, via
our iterative update procedure. Therefore, at training time,
we sample actions randomly according to the actor network
distributions, without imposing the budget constraint. How-
ever, at test time, we always take actions in a way that
respects the budget constraint as described in Alg.[2] Alg.[2]
chooses actions either by (1) selecting greedily by the prob-
abilities of the arm actor networks (2) using the learned
Q(\)-functions of the arm critic networks to follow the Q-
value-maximizing knapsack procedure (Appendix [B), or
(3) in binary-action settings, using the Q(\)-functions to
follow a binary search procedure such that selected actions
are equivalent to the Whittle index policy (Appendix [B).

In theory, the policy networks could be trained via any
DRL procedure that ensures the above characteristics for
training the A-network. In practice, we train with proximal
policy optimization (PPO) [Schulman et al.|[2017], a state-
of-the-art policy gradient approach. Importantly, PPO is
also flexible enough to handle both discrete and continuous
actions which is necessary for the nature oracle.

Finally, to enable our iterative, dual-update procedure in
practice, we need a mechanism to both (1) explore new
arm policy actions after an update to A, then (2) exploit
learned policy actions to develop good gradient estimates
for A. We navigate this important trade-off by adding an
entropy regularization term to the policy networks losses,
controlled via a cyclical temperature parameter. We call our
algorithm Deep Distributed Lagrange Policy Optimization
(DDLPO), provide pseudocode in Algorithm[I} and include
more implementation details in Appendix

4.2 NATURE ORACLE: MULTI-AGENT RL

Armed with a DRL procedure for learning RMAB policies,
we now develop the MARL procedure, which we call MA-
DDLPO, to implement the nature oracle. Recall that the
challenge of the nature oracle is to jointly optimize a policy
7%, and environment parameters w. We propose to solve this
optimization using MARL, designed to handle this form of
non-stationarity [Lowe et al.l[2017] via centralized critics. In
our MARL setup, each of two “players” (i.e., the “multiple
agents”’) will aim to compute 7, and w, respectively, with
separate objectives. The procedure is visualized in Fig. [I[(b).

To implement the MARL nature oracle, we introduce two
new players A and B. Player A is an auxiliary player whose
goal is to optimize the RMAB policy 7 given a changing
w, i.e., the first term of regret (Eq.[1] We call A auxiliary be-
cause its learned policy will never be used outside the nature
oracle; A is only used to assist the nature oracle in com-
puting the regret associated with a given w. Alternatively
player B is an adversarial player whose goal is the same
as that of the nature oracle itself, i.e., to find parameters

Algorithm 3 MA-DDLPO
Input: Agent mixed strategy 7, n_epochs,
n_subepochs, n_steps,n_sims

1: Init. player A: arm policy networks 95{4) and arm critic

networks ¢ Vn € [N], and A-network A
2: Init. player B: environment parameter policy network
0(B) | critic network QS(B )

3: Init. buff =]
4. for epoch = 1,2,...,n_epochs do
5. Sample s at random
6:  Sample A = A(s)
7. for subepoch =1,... ,n_subepochs do
8: fort=1,...,n_stepsdo
o: Sample a't ~ QVSLA)(S,L, A) for each n € [N]
10: Sample w(B) ~ #B) (s)
11: (A s = SIMULATE(s, a4, w(P))
12: 7 = SIMULATE(s, 7(s),w®), n_sims)
// (mean of n_sims I-step rollouts of )
13: r(B) = (ZnG[N] ’/‘SLA)) -7 // (regret of )
14: Add (s, a,w®B) ) r(B) ¢ \)tobuff
15: s=4g

16: Update each (9$LA), (;55{4)) pair using trajectories in
puff. iV getw® as part of state
17:  Update A via Prop. [T] with costs of final subepoch
18:  Update 0(B), ¢(B) using trajectories in buf £. &)
gets a™ as part of state
19: return §(5)

w that maximize regret of the current agent mixed strategy
7. We define a shared transition function for the environ-
ment in which the players act T : S x A4 x Ag — S.
Here, A4 is the action space of the underlying multi-action
RMAB. At a given state s, the action space A p defines for
player B actions w which, in general, depend on s. That
is, at each step, player B selects environment parameters
w, and thus transition probabilities that will influence the
outcome of player A’s actions. We adopt the centralized
critic idea from multi-agent PPO [Yu et al., 2021]] to our
RMAB setting to create MA-DDLPO. A notable strength of
our MARL approach is that it allows the discrete-space pol-
icy of player A and the continuous-space policy of player
B to be learned by separate networks, simplifying train-
ing compared to an alternative combined-network approach.
Moreover, our choice to use PPO offers a convenient way
to learn both types of policies as separate networks, while
utilizing a single framework of update rules.

A critical step is then to define the rewards for players A
and B to match their objectives. Since player A’s objective
is to find 75, it adopts the reward defined by the underlying
RMAB, ie., R (s) = Zf:’=1 R, (s). However, player
B’s objective is to learn the regret-maximizing parameters w.
This objective is challenging because it requires computing



Algorithm 4 RR-DPO

Input: Environment simulator and parameter uncertainty
intervals w,, for all n € [N]

Parameters: Convergence threshold ¢

Output: Agent mixed strategy 7

I: Qo = {wo}, with wy selected at random

2: Iy = {np,,7B,,...}, where mp, are baseline and
heuristic strategies

3: forepoche =1,2,...do

4:  Solve for (7., @.), mixed Nash equilibrium of regret

game with strategy sets Q.1 and 1,3

7. = DDLPO(&.)

we = MA-DDLPO(7,)

Qe = Qe U{we}, e =g U {me}

if L(7e,we) — L(Te—1,@e—1) < € and L(me,0e) —

L(’ﬁ'efl,(z)efl) <e then

9: break

10: return 7,

and optimizing over the returns of the fixed input policy
7 with respect to all possible w, which is in general non-
convex. In practice, to estimate the returns of 7,,, we execute
a series of roll-outs against player B’s current action. That
is, given s at a given round, we sample an action from 7,
and the next state s’, and define the regret-based reward
of player B, as R®) = S R, (s,) — & Z;;l e,
where 7 is the reward from each of Y one-step Monte
Carlo simulations of the mixed strategy 7 in w.

To train the policies, player A has the same policy network
architecture as DDLPO, i.e., N discrete policy networks and
one A-network, and the player B actor network is a single
continuous-action policy network. Since players A and B
have separate reward functions, they have their own critic
networks, but these critics are centralized in that they both
take the actions of the other as input. Other than the central-
ized critic, player A is trained the same way as DDLPO, and
player B is trained in a standard PPO fashion. In practice,
to ensure good gradient estimates for player A’s A\-network
in MA-DDLPO, we keep player B’s network—and thus the
environment—constant between A updates, updating B’s
network with the same frequency as the A-network updates.
Pseudocode for MA-DDLPO is given in Alg. [3]and further
details of its implementation are given in Appendix [D]

4.3 MINIMAX REGRET RMAB DOUBLE
ORACLE

We now have all the pieces needed to run our robust algo-
rithm, Robust RMABs via Deep Policy Oracles (RR-DPO),
visualized in Fig. [T[a), with pseudocode presented in Algo-
rithm[z_fl, adapted from the MIRROR framework [Xu et al.,
2021]]. We use DDLPO to instantiate the agent oracle, MA-
DDLPO for the nature oracle, and run RR-DPO until the

improvement in value for each player is within a tolerance €
or until a set number of iterations.

We now establish conditions under which RR-DPO con-
verges to the minimax regret—optimal policy in finite iter-
ations. In the binary-action setting, assuming each oracle
returns true best responses, and under an analytical con-
dition that is straightforward to achieve, i.e., finite pure
strategy setsﬂ

Proposition 3. RR-DPO converges in a finite number of
steps to the minimax regret-optimal policy.

In addition, we empirically verify that good policies are
found outside of these conditions, and that RR-DPO con-
verges using our continuous-strategy-space nature oracle.
Further, we show that a policy that maximizes reward assum-
ing a fixed parameter set can incur arbitrarily large regret
when the parameters are changed (proofs in Appendix [A).

Proposition 4. In the Robust RMAB problem with interval
uncertainty, the max regret of a reward-maximizing pol-
icy can be arbitrarily large compared to a minimax regret-
optimal policy.

S EXPERIMENTAL EVALUATION

We first experimentally demonstrate the importance of ro-
bust planning in the presence of uncertainty using a hand-
crafted synthetic domain (inspired by Prop. ). We then eval-
uate our algorithm on two challenging real-world-inspired
public health planning scenarios which demonstrate the ca-
pability of our robust RMAB framework. All experiments
use selection method av =‘GreedyProba’ for DDLPO-Act
(Alg.[2), which we found had the best performance.

We compare RR-DPO against five baselines. These base-
lines include three variations of the reward-maximizing
approach from Hawkins| [2003]], which, given fixed envi-
ronment parameters w, at each step computes a Lagrange
policy, then chooses actions following the knapsack proce-
dure described in Sec. 3] The three variations are pessimistic
(HP), mean (HM), and optimistic (HO), which assume the
environment parameters are set at the lower bound, mean,
and upper bound of the given intervals for each arm. We also
implement RLvMid, which learns (rather than computes) a
policy via DDLPO assuming mean parameters, and Rand,
which acts randomly to fill the budget. All results are aver-
aged over 50 random seeds and were executed on a cluster
running CentOS with Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.1 GHz with 8GB of RAM using Python 3.7.10. Our
DDLPO implementation builds on OpenAl Spinning Up
[[Achiam| 2018 and RR-DPO builds on the MIRROR im-
plementation [Xu et al.| 2021]], computing Nash equilibria
using Nashpy 0.0.21 [Knight and Campbell, 2018]]. Code

2Straightforward to achieve for nature oracle via discretization.



is available at https://github.com/killian-34/RobustRMAB
and hyperparameter settings are in Appendix [D}

5.1 EXPERIMENTAL DOMAINS

Synthetic demonstrates that reward-maximizing policies
(RLvMid, HP, HM, HO) may incur large regret in the pres-
ence of uncertainty. There are three binary-action arm types
{U,V,W}, each with C = {0,1}, S = {0,1}, R(s) = s,
and the following transition matrix, with rows and columns
corresponding to actions and next states, respectively:

0.5 0.5 1.0 0.0
n o _ n o _
Tizo = {0.5 0.5} » Tim = [1 — Dn pn}

pu € [0.00,1.00], py € [0.05,0.90], pw € [0.10,0.95]

When an arm is at s = 0, each action has equal impact on
the state transition. When the arms are at s = 1, selecting
arms with high p,, is optimal. This implies that policies can
be specified by the order in which arms would be acted on,
when they are in state s = 1. Accordingly, myp = [W, V, U],
mum = (W, U, V], and myo = [U, W, V]. However, observe
that there exist values of p,, that can make each of the reward-
maximizing policies incur large regret, e.g., for mgo py =
0.0,py = 0.9, pw = 0.1 would induce an optimal policy
[V, W, U], which is the reverse of mxo.

ARMMAN is a real-world maternal healthcare intervention
problem modeled as a binary-action RMAB [Biswas et al.,
2021]]. The goal is to select a subset of mothers each week
to intervene on to encourage engagement with automated
maternal health messaging. The behavior of enrolled women
is modeled by an MDP with three states: Self-motivated,
Persuadable, and Lost Cause. We use the summary statistics
given in their paper and assume uncertainty intervals of
0.5 centered around the transition parameters, resulting in
6 uncertain parameters per arm (details in Appendix [C.T)).
Similar to the setup by Biswas et al.|[2021]], we assume
1:1:3 split of arms with high, medium, and low probability
of increasing their engagement upon intervention. In our
experiments, we scale the value of NV in multiples of 5 to
keep the same split of arm categories of 1:1:3.

SIS Epidemic Model is a discrete-state model in which
arms represent distinct geographic regions and each mem-
ber of an arm’s population of size N, is either (S)usceptible
to or (I)nfected with an infectious disease. Such models
have been the subject of increased interest following the
COVID-19 pandemic [Hinch et al., 2021} Kerr et al., 2021,
and will represent a large-state and multi-action experimen-
tal domain. In our model, the count of S members of the
population is the state of each arm. Each arm’s SIS model is
defined by parameters «, the average number of contacts per
round, and 7.z, the probability of infection given contact
with an I member. Details on computing discrete state tran-
sition probabilities from these parameters are derived from

Yaesoubi and Cohen| [2011]] and given in Appendix [C.2} We
introduce three intervention actions {ag, a1, as} with costs
¢ =1{0,1,2}. Action ag represents no action, a; represents
messaging about physical distancing (divides « by a$’), and
as represents distributing face masks (divides 7;,f.c; by agﬁ ).
We impose the following uncertainty intervals: x € [1, 10],
Pingecr € [0.5,0.99], aff] ,, € [1,10].

5.2 PERFORMANCE OF RR-DPO

First, we evaluate the performance of the algorithms in un-
certain environments. We compute the regret of an agent’s
pure strategy 7 against a nature pure strategy w as the differ-
ence in the average reward obtained by 7 against w and the
average reward of the best strategy in the experiment against
w. The average reward is the discounted sum of rewards over
all arms for a horizon of length 10, over 25 simulations. In
each setting, DO runs for 6 epochs, using 100 rollout steps
and 100 training epochs for each oracle. After completion,
each baseline strategy is evaluated by querying the nature
oracle for the best response against that strategy, then com-
puting max regret against all w. The regret of RR-DPO is
computed as the utility of the agent mixed strategy returned
by the DO over the two-player regret game.

Fig. 2Ja—f) shows RR-DPO incurs the lowest regret, beating
the baselines in all domains. (a,b) shows results on the syn-
thetic domain, demonstrating our approach can reduce regret
by ~50% against the benchmarks, across various values of
N and B. Moreover, as B increases, the regret incurred may
increase, since higher budget implies better reward poten-
tial for the optimal policy; however, the regret for RR-DPO
remains small even as B grows. Similarly, for the ARM-
MAN domain (c,d), a challenging domain adapted from a
real-world problem, our algorithm performs consistently
better than the baselines, achieving regret that is around
50% lower than the best baselines. In the SIS domain (e—f),
another real-world planning setting with a larger state space
and multiple actions, our results are robust across parame-
ter settings. Importantly, this holds even as we increase the
state space from .S = 100 to 500 (f), in which running the
Hawkins baseline becomes prohibitively expensive.

Finally, we run sensitivity analyses of the algorithms against
H and the size of the uncertainty sets (Appendix Fig.[AT]).
When H varies from 10 to 100, RR-DPO maintains very
low regret, while competitor regret as much as doubles,
increasing RR-DPO’s relative improvement as high as ~60%.
Similar results are obtained when varying the uncertainty
intervals between 0.25, 0.5 and 1.0 times their widths from
the experiments in Fig.[2] with RR-DPO always dominating.


https://github.com/killian-34/RobustRMAB

BN RR-DPO [ RLvMd WEM Rand BEE HP 2 HM  [ZJ HO =1 NoActon MEE Random @EE Hawkins HEE DDLPO
4
2 3
O N:gBil  N:21Bil N:48B:l  N:6,B:l N:6B:2  N:i6B:3 - N:3.Bil  N:21,B:7 N:48,B:16 N:21,B:4 N:21,B:7 N:21,B:10
< (a) (b) = (9) (h)
= 6 o
E 3 [ ‘;“ 4
(o))
g 0 N:15,B:1  N:25,B:1  N:35,B:1 N:10,B:1 N:10,8:2 N:10,B:3 gz N:5,B:1 N:25,B:5 N:50,B:10 N:25,B:3 N:25,B:5 N:25,B:7
. (© (d) () )}
O 4 8
4 2
0 0 6
N:3,B:2  N:5B:4 N:12,B:10 s:100 S:200 S:500 N:5,B:4 S:100 S:200 S:500

(e)

N:10,B:8 N:15,B:12
(k) )

Figure 2: (a—f) Maximum policy regret of RR-DPO in robust setting for Synthetic (a,b), ARMMAN (c,d) and SIS (e,f)
domains. Lower is better. Synthetic is scaled by 3 and ARMMAN by 5 to maintain the distributions of arm types specified
in Sec.[3] (e) uses S = 50 and (f) uses N = 5, B = 4. RR-DPO beats all baselines by a large margin across various settings.
(g-1) Returns of DDLPO for reward-maximizing setting (agent oracle) for synthetic (g,h), ARMMAN (i,j), and SIS (k,l)
domains. Higher is better. (k) uses S = 50 and (1) uses N = 5, B = 4. DDLPO is competitive across parameter settings.

. “

> »s] = Hawkins ““
2 200 =|]= DDLPO Lol
£ “"
€ 1001 % o
3 PR
o “-‘

() o ol Bt e o ——————

400 600 800 1000

Population size

0 200

Figure 3: The poor scaling of query time of the Hawkins
baseline compared to DDLPO, as discussed in Sec. E], even
for relatively small problem sizes (N = 10, B = 2).

5.3 PERFORMANCE OF DDLPO

We also evaluate the performance of DDLPO, our novel
DRL approach to find reward-maximizing policies for multi-
action RMABs, which implements our agent oracle. We
compare against No Action and Random baselines as well
as the computationally intensive solution by Hawkins which
computes the Lagrange policy, but which requires exact en-
vironment parameters and discrete states/actions. Hawkins
upper bounds DDLPO for small discrete problems since it is
exact whereas DDLPO learns the Lagrange policy from sam-
ples. Each experiment is a traditional reward-maximizing
RMAB instantiated with a random sample of valid parame-
ter settings for each seed.

Fig.[2(g-1) shows DDLPO achieves reward comparable to
the Hawkins algorithm and significantly better than random,
providing insight into the success of our RR-DPO approach
which DDLPO enables, and showing promise for DDLPO
as an algorithm of general interest. In the synthetic domain
(g,h), DDLPO learns to act on the 33% of arms who be-
long to category W. The mean reward of DDLPO almost
matches that of Hawkins algorithm as IV scales with a com-
mensurate budget (g). As we fix N and vary the budget (h),
the optimal policy accumulates more reward, and DDLPO
almost equals the optimal. We observe similar results on

the ARMMAN domain (i,j), a challenging real-world health
problem. On the SIS domain (k,1), the strong performance of
DDLPO holds in a multi-action setting even as we increase
the number of states from 50 to 500 (1).

Moreover, DDLPO beats Hawkins computationally: in
Fig.[3] a single rollout (10 rounds) of Hawkins takes ~100
seconds when there are 500 states, scaling quadratically in
general. This demonstrates that it would be prohibitive to
run Hawkins in the loop of RR-DPO, since agent policies
are evaluated thousands of times to compute the regret ma-
trices. For just 25 simulations, computation would take ~42
minutes to evaluate a single cell in the regret matrix, which
has |TI| x |Q] total cells.

6 CONCLUSION

We address a key limitation blocking RMABs from many
real-world settings: that arm dynamics are not known pre-
cisely. To plan safe, effective policies, robust approaches
accounting for uncertainty are essential, which we give in
RR-DPO, enabled by DDLPO, a novel deep-RL algorithm
for RMABsS of general interest. We hope our contributions
bring us closer to deploying RMABs for real-world impact.
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A PROOFS

A.1 PROOF OF PROPOSITION

Proposition 1. 7o learn the value )\ that minimizes Eq.
given a state s, the \-network, parameterized by A, should
be updated with the following gradient rule:

B N
Ae=A_1—« (1_6 + ZDn(Sm)‘t—l(S))> @)

n=1

where « is the learning rate and D,,(sy,, \) is the negative
of the expected [3-discounted sum of action costs for arm n
starting at state s,, under the optimal policy for arm n for a
given value of ).

Proof. The gradient update rule is derived by taking the
gradient of Eq. 4| with respect to A, which has two main
terms, AB/(1 — (), and the sum over @, the Q-functions
with respect to A. Looking more closely at (), the only
terms which are a function of A\ are the costs of actions
taken by the policy that (),, implies, i.e., terms —Ac;. Thus,
the gradient of @,, is the negative expected discounted sum
of costs taken by the optimal policy at the given value of A,

ie., dﬁ\" = —IE[Z,{{:O Btcn +], where ¢, ¢ is the cost of the
action taken on arm 7 in round ¢. O

A.2 PROOF OF PROPOSITION

Proposition 2. Given arm policies corresponding to op-
timal Q-functions, Prop. [l|will lead A to converge to the
optimal as the number of training epochs and K — oc.

Proof. Eq. is convex in A, which follows from definition
of @, i.e., the max over piece-wise linear functions of X\ is
also a convex function in A. Thus the learning task of A is
also convex. Therefore, all that is required for asymptotic
convergence of A is that (1) the gradients we estimate via
Prop. E]are accurate, and that (2) all inputs, i.e., all states s,
are seen infinitely often in the limit. (1) is achieved by the
assumption that optimal ()-functions are given, an analytic
condition that is achieved in practice by allowing the arm-
networks to train for a reasonable number of rounds under a
given output of the A-network, before updating A. Specif-
ically, given optimal Q-functions and their corresponding
optimal policies, the sampled sums of spent budget from
those optimal policies represent an unbiased estimator of
each D,,. Note, though that to be an unbiased estimator,
this relies on not imposing the budget constraint at train-
ing time, a procedure we carry out in practice Thus (1)

31t is critical to note that at test time, we always impose the
budget constraint — i.e., all of our methods solve the original con-
strained RMAB problem — they only use the Lagrangian relaxation
as a tool to find good policies to the original constrained problem.

is achieved. (2) is achieved by following a training proce-
dure that uniformly randomly samples start states s for each
round of training until convergence. Thus the proposition is
established. O

A.3 PROOF OF PROPOSITION

Proposition 3. RR-DPO converges in a finite number of
steps to the minimax regret-optimal policy.

Proof. A common strategy for establishing optimal conver-
gence of the double oracle is to show that the pure strategy
sets of both players can be exhausted. We can achieve this
in our setting under the conditions (1) that each player has
a finite strategy set, i.e., is possible to be exhausted and
(2) that each oracle gives an optimal best response. Since
the agent pure strategy set is already finite, we can achieve
(1) by discretizing the nature oracle—in effect by rounding
the outputs of the policy network. For (2), for analytical
purposes, we make the common assumption that our ora-
cles internally converge to their optimal values, i.e., in our
case, the arm-networks and A-network converge optimally.
However, since our networks learn the Lagrange-relaxed
version of the problem, some additional tools are needed.
Speficially, we must identify conditions in which DDLPO-
Act gives policies which approach 7. This can be achieved
in the binary-action setting with v = ‘“Whittle’, which uses
a binary search procedure to identify a value of A such that
exactly B arms have @, (a = 1,\) > Q,(a = 0, \), then
acting on those arms. This procedure is equivalent to the
Whittle index policy, which is asymptotically optimal for
binary-action RMABs [Weber and Weiss|, |1990)]]. O

A.4 PROOF OF PROPOSITION @

Proposition 4. In the Robust RMAB problem with interval
uncertainty, the max regret of a reward-maximizing pol-
icy can be arbitrarily large compared to a minimax regret-
optimal policy.

Proof. Consider a binary-action RMAB problem with two
arms A and B. Let the reward from each arm be R when
the arm is in a good state and 0 in a bad state. Our problem
is to plan the best action with a budget of 1 and horizon
of 1. Supposing the initial state is bad for each arm, the
transition probabilities for the transition matrix for each

arm n is 0 } where the uncertain variable p,, is

[1 — Pn Pn
constrained to be within p4, pp € [0, 1]. Each value in the
matrix corresponds to the probability of an arm at state bad
transitioning to bad (column 1) or good (column 2) if we
take the passive (row 1) or active action (row 2).

To compute a reward-maximizing policy that does not con-
sider robustness to uncertainty, we must optimize for one



instantiation of the uncertainty set, which requires making
one of three assumptions.

* Case 1: If we assume p4 = pp, then an optimal policy
is to act with probability a4 on arm A and ap on arm
Baslongasas+ap = 1. W.lo.g., suppose a4 > ap;
then nature would set p4 = 0 and pp = 1, imposing
regret at least R/2.

* Case 2: If py > pp, then the optimal policy would
be to always act on arm A with probability a4 = 1
and never act on B (ap = 0). Nature would then set
pa = 0and pp = 1 to impose regret R.

e Case 3: If pa < pp, the case is symmetric to Case 2
and result in regret R. Clearly, max regret is minimized
when our action is such that a4 + ag = 1; in this
setting, we learn this optimal policy only under Case 1.
Following Case 2 or 3, the difference between our
regret and the minimax regret is R/2, which grows
arbitrarily higher as R — oo.

A slight modification to this problem renders Case 1 non-
optimal. Let the reward be R when arm A is in a good state
and R — 1 for arm B, so the optimal policy learned under the
assumption from Case 1 leads to a4 = 1 and ag = 0. Then
nature could respond with p4 = 0 and pp = 1, yielding
reward 0 and regret R— 1, while the minimax regret—optimal
policy achieves a minimum reward of (R—1)/2 (by playing
a4 = 0.5 and ap = 0.5 where nature responds withp4 = 0
and pp = 1). Thus, the gap again can grow arbitrarily high
as R — oo provided that R > 1. We therefore have that
in all cases, any reward-maximizing policy can achieve
arbitrarily bad performance in terms of regret. O

B DDLPO-ACT SUBROUTINES

Here we provide the integer program which implements
QKnapsack, one of the action-selection procedures used in
Alg.[2]to take actions at test time. QKnapsack takes A and
Qn (s, a, \) from the learned A\-network and arm networks,
respectively, and returns the combination of actions that
maximizes the sum of Q-values over all arms, subject to the
costs of each action C and the budget constraint B.

N Al
m)?xz anan(Sn,anp)\) 8)
n=1j=1
N A
s.t. ZZmnjcj <B )
i=n j=1
|Al
Y @nj=1 VYnel.N (10)
j=1
Tpj € {0,1} (11)

Algorithm A1 BinaSearch (for the Whittle Index Policy)
,oN, budget B,

Input: State s, arm critic networks ¢, ...
tolerance e.

i Gnj = ¢n(sn,anj, A =0) Vn € [N],Vj € [[A[l
2:.b=0

3: ub = maxpe(n),jefjaf {9ns}

4: while ub — b > e do

50 A= %Hb

6: Anj = (;Sn(sn?anjv)‘) Vn € [N],Vj € HA”

7. if fewer than B arms have g, j—1 > g, j—o then

3: ub =\ // Charging too much, decrease
9:  elseif more than B arms have ¢, j—1 > ¢p, ;=0 then
10: =X // Can charge more, increase
11:  elseif exactly B arms have ¢, j—1 > ¢y ;=0 then
12: break
13: a=0
14: a,, = 1 where ¢y, j—1 > qn,j=0
15: if ub — Ib < e then
16:  break ties randomly s.t. ||a||; = B
17: return a

In Alg. [AT] we give the procedure BinaSearch which
implements a binary search over the learned Q()\)-values
to find a charge A for which exactly B arms prefer to act
rather than not act. This mimics the Whittle index policy in
binary-action settings.

C EXPERIMENTAL DOMAIN DETAILS

C.1 ARMMAN

The MDPs in the ARMMAN domain [Biswas et al.,[2021]]
have three ordered states representing the level of engage-
ment of the beneficiaries in the previous week. Rewards are
better for lower states, i.e., R(0) = 1, R(1) = 0.5, R(2) =
0. At each step, the beneficiary may only change by one
level, e.g., low-to-medium or high-to-medium but not low-
to-high. They also assume that beneficiaries follow one of
three typical patterns, A, B, and C, resulting in three MDPs
with different transition probabilities. There are two patterns
of effects present that differentiate the beneficiary types.
(1) For each of the above types, the planner can only make
a difference when the patient is in state 1. Type A responds
very positively to interventions, but regresses to low reward
states in absence. Type B has a similar but less amplified
effect, and type C is likely to stay in state 1, but can be pre-
vented from regressing to state 2 when an action is taken. (2)
Further, types A and C have only a 10% chance of staying
in the high reward state, while type B has a 90% chance of
staying there.

We converted these patient types to robust versions where
the transition probabilities are uncertain as follows:



Ti_o _ {péoo 1 *Péoo 0-0]
5= Poro 1 —poo 0.0]°

i [00 1= pioz pioz}
s=1 Plio 1—pi 00]°

T, = {0-0 1 — po2 Plzoz]
= 0.0 1—pho Phia)’

where ¢ indexes the type (i.e., A, B or C). We then set each
pl,s to be in a range of width 0.5 centered on the entries
from each of the A, B, C beneficiary types for s € {1,2}. To
add additional heterogeneity to the experiments, for s = 0,
we set the range to 1.0 so that any beneficiary type can be
made to have some non-negligible chance of staying in the
good state, rather than only type B beneficiaries. The full
set of parameter ranges are given in the Table[AT]below.

| Param | L | U | L |U| L | U|

| TypeA | | |[TypeB| | TypeC| |
Phoo | 00 ] 1 .00 1 .00 1
piio |00 ] 1 .00 1 .00 1
Ploa | 50| 1 35 .85 35 .85
Pl |50 1 .15 65 .00 .50
phos | 35| .85 .35 .85 35 .85
phis | 35| .85 35 .85 35 .85

Table A1: Upper (U) and lower (L) parameter ranges for the
robust ARMMAN environment.

In all experiments, 20% of arms were sampled from type A,
20% from type B and 60% for type C. To add additional het-
erogeneity, for each of the 50 random seeds we uniformly
sample a sub-range contained within the ranges given in
Table [AT] In the agent oracle experiments, for each of the
50 random seeds, since these require fully instantiated tran-
sition matrices, we uniformly sample each parameter value
for each arm according to its type such that the values are
contained in the ranges given in Table

C.2 SIS EPIDEMIC MODEL

In this domain, each arm follows its own compartmental
SIS epidemic model. Each arm’s SIS model tracks whether
each of N, members of a population is in a susceptible (S)
or infectious (I) state. This can be tracked with N, states,
since it can be computed how many people are in state I if
only the number of people in state S and the population size
N, is known.

To define a discrete SIS model, we instantiate the model
given in|Yaesoubi and Cohen! [2011]] section 4.1 with a At
of 1. We also augment the model to include action effects
and rewards. Specifically, R(Ng) = Ng/N,, where Ng is
the number of susceptible (non-infected) people. Further,

there are three actions {ag, a1, az} with costs ¢ = {0, 1, 2}.
Action a represents no action, a; divides the contacts per
day (A in|Yaesoubi and Cohen|[2011]]) by aiﬁ , and as di-
vides the infectiousness 7iyfecr (r(t) in|Yaesoubi and Cohen

[2011]) by agﬁ . That is, taking action a; will reduce the av-
erage number of contacts per day in a given arm, and taking
action ag will reduce the probability of infection given con-
tact in a given arm, thus reducing the expected number of
people that will become infected in the next round. However,
to make this a robust problem, the relative effect sizes of
each action for each arm will not be known to the planner,
nor will the x or rjp,. We impose the following uncer-
tainty intervals for all arms: k € [1, 10], Tjnpee € [0.5,0.99],

a?f € [1,10], and o € [1,10).

In the robust double oracle experiments, to add additional
heterogeneity, for each of the 50 random seeds we uniformly
sample a sub-range contained within the ranges given above
for each arm. In the agent oracle experiments, for each of
the 50 random seeds, since these require fully instantiated
transition matrices, we uniformly sample each parameter
value for each arm such that the values are contained in the
ranges given above.

D HYPERPARAMETER SETTINGS AND
IMPLEMENTATION DETAILS

Neural networks: All neural networks in experiments are
implemented using PyTorch 1.3.1 [Paszke et al.;[2019] with
2 fully connected layers each with 16 units and tanh acti-
vation functions, and a final layer of appropriate size for
the relevant output dimension with an identity activation
function. The output of discrete actor networks (i.e., the pol-
icy network from the agent oracle, and the policy network
of agent A in the nature oracle) pass through a categorical
distribution from which actions are randomly sampled at
training time, without a budget imposed. It is critical not to
impose the budget at training time, so that the budget spent
by the optimal policy under a given A will result in a mean-
ingful gradient for updating the A-network. The output of
continuous actor networks (i.e., agent B in the nature oracle
which selects environment parameter settings) instead are
passed as the means of Gaussian distributions — with the log
standard deviations learned as individual parameters sepa-
rate from the network — from which continuous actions are
sampled at training time. At test time, actions are sampled
from both types of networks deterministically. For categori-
cal distributions, we greedily select the highest probability
actions. For Gaussian distributions, we act according to the
means. All discount factors were set to 0.9. The remaining
hyperparameters that were constant for all experiments for
the agent and nature oracles are indicated in Table For
Robust Double Oracle experiments, all agent and nature
oracles were run for 100 training epochs. For Agent Oracle
experiments, DDLPO was run for 100 training epochs for



the synthetic and ARMMAN domains and 200 epochs for
the SIS domain.

A-network: Critical to training the A-network is cyclical
control of the temperature parameter that weights the en-
tropy term in the actor loss functions. Recall that the A-
network is only updated every n_subepochs. In general,
after each update to the A\-network, we want to encourage
exploration so that actor networks explore the new part of
the state space defined by updated predictions of . How-
ever, after n_subepochs rounds, we will use the cost of
the sampled actor policies as a gradient for updating the
A-network, and that gradient will only be accurate if the
actor policy has converged to the optimal policies for the
given A predictions. Therefore, we also want to have little or
no exploration in the round before we update the A-network.
In general, we would also like the entropy of the policy
network to reduce over time so that the actor networks and
A-networks eventually both converge.

To accomplish both of these tasks, the weight (temperature)
of the entropy regularization term in the loss function of
the actor network will decay/reset according to two pro-
cesses. The first process will linearly decay the temperature
from some positive, but time-decaying starting value (see
next process) 7, immediately after each A-network update,
down to 0 after n_subepochs. The second process will
linearly decay the temperature from a maximum g (start
entropy coeff in Table down to Ty, (end entropy coeff
in Table [AZ)) by the end of training.

We found that it also helps to train the actor network with
no entropy and with the A\-network frozen for lambda freeze
epochs rounds before training is stopped (Table[A2)).

Double Oracle: In all experiments in the main text, we ini-
tialize the agent strategy list with HO, HM, and HP, and the
nature strategy list with pessimistic, mean, and optimistic
nature strategies, then run RR-DPO for 6 iterations. This
produces a set of 8 agent strategies, 8 nature strategies, a ta-
ble where each entry represents the regret of each agent pure
strategy (row) against each nature pure strategy (column),
and an optimal mixed strategy over each set that represents
a Nash equilibrium of the minimax regret game given in the
table. The regret table is computed by first computing the
returns of each agent/nature pure strategy combination, then
subtracting the max value of each column from all entries in
that column (i.e., the best agent strategy for a given nature
strategy gets O regret). The regret of RR-DPO is reported as
the expected utility corresponding to the Nash equilibrium
of the regret game given by the table, once that regret table
is normalized to account for the returns of baselines (next).

After this main loop completes, we then compute the regret
of the baselines by evaluating each baseline policy against
each pure strategy in the nature strategy list. Then, we also
run the nature oracle against each baseline policy to find
a nature strategy that should maximize the regret of that

parameter value
agent

clip ratio 2.0e+00
lambda freeze epochs | 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actor learning rate 2.0e-03
critic learning rate 2.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00
nature

clip ratio 2.0e+00
lambda freeze epochs | 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actorA learning rate 1.0e-03
criticA learning rate 1.0e-03
actorB learning rate 5.0e-03
criticB learning rate 5.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00
n_sims 2.5e+01

Table A2: Hyperparameter settings for agent and nature
oracles for all experiments.

baseline. The regret for each baseline is reported as the max
regret against this new nature strategy, as well as all pure
nature strategies from the main RR-DPO loop.

Hawkins Baselines: The Hawkins policies are imple-
mented with gurobipy 9.1.2, a Python wrapper for Gurobi
(9.0.3) [Gurobi Optimization, |2021] following the LP given
in[Hawkins|[2003]] equation 2.5 to compute A and Q(s, a, \)
for each arm and the integer program in equation 2.12 to
select actions.

RLvMid Baseline: We found that RLvMid found effective
policies for the nature strategy it was trained against (as evi-
denced in Figure[2)(a-f), but that that learned policy could be
brittle against other nature strategies. This is likely because
different nature strategies produce different distributions of
states, meaning RLvMid would fit policies well to states
seen when planning against the mean nature strategy, but
underfit its policies for states seen more often in different
distributions. However, the lone RLvMid baseline policy
can somewhat correct for this effect by training an ensemble
of policies against slight perturbations of the mean nature
strategy that adjust the parameter values output by nature
by a small e. In all experiments we train 3 RLvMid policies
against 3 random perturbations of the mean nature strategy,
then report the regret of RLvMid as the minimum of the
max regrets returned by any of the 3.
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Figure Al: (Left column) varies the uncertainty intervals to be 0.25, 0.5 and 1.0 times their widths (UM = uncertainty
multiplier). The gap between our robust RR-DPO method and non-robust methods becomes larger as the uncertainty interval
increases, and our robust algorithm RR-DPO always provides the lowest regret policies. (Right column) varies the horizon
Hin 10, 25, 50, 100. As expected, the gap between RR-DPO and the baselines either stays the same, or increases as H is
increased, further demonstrating the robustness of our algorithm to various parameters.
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