Learning-to-defer for sequential medical decision-making under uncertainty

Citation:

Parbhoo S, Joshi S, Doshi-Velez F. Learning-to-defer for sequential medical decision-making under uncertainty. Proceedings of the International Conference on Machine Learning: Workshop on Neglected Assumptions in Causal Inference (ICML). 2021.
2109.06312.pdf6.21 MB

Abstract:

Learning-to-defer is a framework to automatically defer decision-making to a human expert when ML-based decisions are deemed unreliable. Existing learning-to-defer frameworks are not designed for sequential settings. That is, they defer at every instance independently, based on immediate predictions, while ignoring the potential long-term impact of these interventions. As a result, existing frameworks are myopic. Further, they do not defer adaptively, which is crucial when human interventions are costly. In this work, we propose Sequential Learning-to-Defer (SLTD), a framework for learning-to-defer to a domain expert in sequential decision-making settings. Contrary to existing literature, we pose the problem of learning-to-defer as model-based reinforcement learning (RL) to i) account for long-term consequences of ML-based actions using RL and ii) adaptively defer based on the dynamics (model-based). Our proposed framework determines whether to defer (at each time step) by quantifying whether a deferral now will improve the value compared to delaying deferral to the next time step. To quantify the improvement, we account for potential future deferrals. As a result, we learn a pre-emptive deferral policy (i.e. a policy that defers early if using the ML-based policy could worsen long-term outcomes). Our deferral policy is adaptive to the non-stationarity in the dynamics. We demonstrate that adaptive deferral via SLTD provides an improved trade-off between long-term outcomes and deferral frequency on synthetic, semi-synthetic, and real-world data with non-stationary dynamics. Finally, we interpret the deferral decision by decomposing the propagated (long-term) uncertainty around the outcome, to justify the deferral decision.

Publisher's Version